Yang Xiaofeng, Schuster David, Master Viraj, Nieh Peter, Fenster Aaron, Fei Baowei
Department of Radiology, Emory University, Atlanta, GA, USA.
Proc SPIE Int Soc Opt Eng. 2011;7964. doi: 10.1117/12.877888. Epub 2011 Mar 1.
We are developing a molecular image-directed, 3D ultrasound-guided, targeted biopsy system for improved detection of prostate cancer. In this paper, we propose an automatic 3D segmentation method for transrectal ultrasound (TRUS) images, which is based on multi-atlas registration and statistical texture prior. The atlas database includes registered TRUS images from previous patients and their segmented prostate surfaces. Three orthogonal Gabor filter banks are used to extract texture features from each image in the database. Patient-specific Gabor features from the atlas database are used to train kernel support vector machines (KSVMs) and then to segment the prostate image from a new patient. The segmentation method was tested in TRUS data from 5 patients. The average surface distance between our method and manual segmentation is 1.61 ± 0.35 mm, indicating that the atlas-based automatic segmentation method works well and could be used for 3D ultrasound-guided prostate biopsy.
我们正在开发一种分子图像引导、三维超声引导的靶向活检系统,以提高前列腺癌的检测率。在本文中,我们提出了一种基于多图谱配准和统计纹理先验的经直肠超声(TRUS)图像自动三维分割方法。图谱数据库包括来自先前患者的配准TRUS图像及其分割的前列腺表面。使用三个正交的Gabor滤波器组从数据库中的每个图像中提取纹理特征。来自图谱数据库的特定患者Gabor特征用于训练核支持向量机(KSVM),然后对新患者的前列腺图像进行分割。该分割方法在5名患者的TRUS数据中进行了测试。我们的方法与手动分割之间的平均表面距离为1.61±0.35毫米,表明基于图谱的自动分割方法效果良好,可用于三维超声引导的前列腺活检。