Ifremer, CNRS, Université Montpellier 2, IRD and Université Montpellier 1, UMR 5119 Laboratoire Écologie des Systèmes Marins Côtiers, Place Eugène Bataillon, PO Box 34095, Montpellier, France.
BMC Genomics. 2012 Jun 18;13:252. doi: 10.1186/1471-2164-13-252.
The complex balance between environmental and host factors is an important determinant of susceptibility to infection. Disturbances of this equilibrium may result in multifactorial diseases as illustrated by the summer mortality syndrome, a worldwide and complex phenomenon that affects the oysters, Crassostrea gigas. The summer mortality syndrome reveals a physiological intolerance making this oyster species susceptible to diseases. Exploration of genetic basis governing the oyster resistance or susceptibility to infections is thus a major goal for understanding field mortality events. In this context, we used high-throughput genomic approaches to identify genetic traits that may characterize inherent survival capacities in C. gigas.
Using digital gene expression (DGE), we analyzed the transcriptomes of hemocytes (immunocompetent cells) of oysters able or not able to survive infections by Vibrio species shown to be involved in summer mortalities. Hemocytes were nonlethally collected from oysters before Vibrio experimental infection, and two DGE libraries were generated from individuals that survived or did not survive. Exploration of DGE data and microfluidic qPCR analyses at individual level showed an extraordinary polymorphism in gene expressions, but also a set of hemocyte-expressed genes whose basal mRNA levels discriminate oyster capacity to survive infections by the pathogenic V. splendidus LGP32. Finally, we identified a signature of 14 genes that predicted oyster survival capacity. Their expressions are likely driven by distinct transcriptional regulation processes associated or not associated to gene copy number variation (CNV).
We provide here for the first time in oyster a gene expression survival signature that represents a useful tool for understanding mortality events and for assessing genetic traits of interest for disease resistance selection programs.
环境和宿主因素之间的复杂平衡是易感性感染的重要决定因素。这种平衡的破坏可能导致多因素疾病,如夏季死亡率综合征,这是一种影响牡蛎、巨牡蛎的全球性复杂现象。夏季死亡率综合征揭示了一种生理不耐受性,使这种牡蛎物种易患疾病。因此,探索控制牡蛎对感染的抗性或易感性的遗传基础是理解田间死亡率事件的主要目标。在这方面,我们使用高通量基因组方法来识别可能表征巨牡蛎固有生存能力的遗传特征。
使用数字基因表达 (DGE),我们分析了能够或不能够通过被认为与夏季死亡率有关的物种 Vibrio 感染存活的牡蛎血细胞(免疫细胞)的转录组。在 Vibrio 实验感染前从牡蛎中采集非致死性血细胞,并从存活或未存活的个体中生成两个 DGE 文库。DGE 数据的探索和个体水平的微流控 qPCR 分析显示,基因表达存在非凡的多态性,但也存在一组血细胞表达的基因,其基础 mRNA 水平可区分牡蛎对致病性 V. splendidus LGP32 感染的存活能力。最后,我们确定了一个预测牡蛎存活能力的 14 个基因特征。它们的表达可能是由与基因拷贝数变异 (CNV) 相关或不相关的不同转录调控过程驱动的。
我们首次在牡蛎中提供了一个代表了解死亡率事件和评估对疾病抗性选择计划感兴趣的遗传特征的有用工具的基因表达存活特征。