The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology , Guangzhou 510641, China.
ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3627-35. doi: 10.1021/am3007005. Epub 2012 Jun 29.
A series of anion conductive aromatic ionomers, poly(arylene ether)s containing various polymer backbones and quaternary ammonium basic group functioned tetraphenyl methane moieties, were synthesized via nucleophilic substitution polycondensation, chloromethylation, quaternization, and the subsequent alkalization reactions. The structures of poly(arylene ether)s (PAEs), chloromethylated poly(arylene ether)s (CMPAEs), and quaternizated poly(arylene ether)s (QPAEs) ionomers were confirmed by (1)H NMR technique. Their thermal stabilities were evaluated by thermo gravimetric analysis (TGA). The water uptakes, ion exchange capacities (IEC), hydroxide ion conductivities, mechanical properties, and chemical stabilities of the membranes derived from the synthesized ionomers were assessed as anion exchange membranes. The QPAEs membranes were tough and thermally stable up to 170 °C. The IEC of the ionomers varied from 0.21 to 2.38 meq g(-1) which can be controlled by chloromethylation reaction conditions. The ion conductivities of QPAEs membranes increase dramatically with increasing temperature. The hydroxide ion transport activation energy, Ea, of the QPAEs membranes varied from 13.18 to 42.30 kJ mol(-1). The QPAE-d membrane with lower IEC value of 1.04 meq g(-1), derived from copolymer CMPAE-d bearing sulfone/ketone structure, displayed the highest hydroxide ion conductivity of 75 mS cm(-1) at 80 °C and showed strong tensile strength (29.2 MPa) at 25 °C. The QPAE-e membrane with IEC value of 1.09 meq g(-1), derived from copolymer CMPAE-e bearing sulfone/ketone-ketone structure, demonstrated 68 mS cm(-1) at 80 °C. The QPAE-d membrane kept 90% of mechanical properties and 82% of hydroxide ion conductivity after being conditioned with 1 M NaOH at 60 °C for 170 h. These properties of the ionomers membranes show their potential as an anion exchange membrane of alkaline fuel cells.
一系列阴离子导电的芳香离子聚合物,即含有各种聚合物主链和季铵碱性基团的四苯甲烷部分的聚(芳基醚),是通过亲核取代缩聚、氯甲基化、季铵化以及随后的碱化反应合成的。聚(芳基醚)(PAE)、氯甲基化聚(芳基醚)(CMPAE)和季铵化聚(芳基醚)(QPAE)离聚物的结构通过(1)H NMR 技术得到证实。它们的热稳定性通过热重分析(TGA)进行评估。通过评估所合成的离聚物衍生的膜的吸水率、离子交换容量(IEC)、氢氧化物离子电导率、机械性能和化学稳定性来评估它们作为阴离子交换膜的性能。QPAE 膜坚韧,热稳定性高达 170°C。离聚物的 IEC 从 0.21 到 2.38 meq g(-1),可通过氯甲基化反应条件进行控制。QPAE 膜的离子电导率随温度的升高而显著增加。QPAE 膜的氢氧化物离子传输活化能,Ea,从 13.18 到 42.30 kJ mol(-1)。IEC 值为 1.04 meq g(-1)的 QPAE-d 膜,来源于具有砜/酮结构的共聚物 CMPAE-d,在 80°C 时具有最高的 75 mS cm(-1)的氢氧化物离子电导率,在 25°C 时具有 29.2 MPa 的高拉伸强度。IEC 值为 1.09 meq g(-1)的 QPAE-e 膜,来源于具有砜/酮-酮结构的共聚物 CMPAE-e,在 80°C 时具有 68 mS cm(-1)的电导率。在 60°C 下用 1 M NaOH 处理 170 小时后,QPAE-d 膜保持了 90%的机械性能和 82%的氢氧化物离子电导率。这些离聚物膜的性能表明它们有潜力作为碱性燃料电池的阴离子交换膜。