Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
FEBS Lett. 2012 Jul 16;586(15):2049-56. doi: 10.1016/j.febslet.2012.02.033. Epub 2012 Mar 2.
Artificial nucleic acids have the potential to propagate genetic information in vivo purposefully insulated from the canonical replication and transcription processes of cells. Natural nucleic acids are synthesized using nucleoside triphosphates as building blocks and polymerases as catalysts, pyrophosphate functioning as the universal leaving group for DNA and RNA biosynthesis. In order to avoid entanglement between the propagation of artificial nucleic acids in vivo and the cellular information processes, we promote the biosynthesis of natural and xenobiotic nucleic acids (XNA) dependent on the involvement of leaving groups distinct from pyrophosphate. The feasibility of such radically novel biochemical systems relies on the systematic exploration of the chemical diversity of nucleic acid leaving groups that can undergo the catalytic mechanism of phosphotransfer in nucleic acid polymerization. Initial forays in this research area demonstrate the wide acceptance of polymerases and augur well for in vivo implementation and integration with canonical metabolism.
人工核酸有可能在体内有目的地传播遗传信息,与细胞的典型复制和转录过程隔离。天然核酸是使用核苷三磷酸作为构建块,聚合酶作为催化剂合成的,焦磷酸作为 DNA 和 RNA 生物合成的通用离去基团。为了避免人工核酸在体内的传播与细胞信息过程之间的纠缠,我们促进了依赖于不同于焦磷酸盐的离去基团的天然和异源核酸 (XNA) 的生物合成。这种激进的新型生化系统的可行性依赖于对能够经历核酸聚合中磷酸转移催化机制的核酸离去基团的化学多样性的系统探索。该研究领域的初步探索表明聚合酶被广泛接受,并为体内实施和与典型代谢的整合提供了良好的前景。