Suppr超能文献

一种可靠的钯介导的尿苷脲基氮上BOM基团的氢解去保护反应。

A reliable Pd-mediated hydrogenolytic deprotection of BOM group of uridine ureido nitrogen.

作者信息

Aleiwi Bilal A, Kurosu Michio

机构信息

Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison, Memphis, TN 38163, USA.

出版信息

Tetrahedron Lett. 2012 Jul 18;53(29):3758-3762. doi: 10.1016/j.tetlet.2012.05.035. Epub 2012 May 12.

Abstract

The benzyloxymethyl (BOM) group has been utilized widely in syntheses of a variety of natural and non-natural products. The BOM group is also one of few choices to protect uridine ureido nitrongen. However, hydrogenolytic cleavage of the BOM group of uridine derivatives has been unrealizably performed via heterogeneous conditions using Pd catalysts. One of the undesirable by-products formed by Pd-mediated hydrogenation conditions is the over-reduced product of which the C5-C6 double bond of the uracil moiety was saturated. To date, we have generated a wide range of uridine-containing antibacterial agents, where the BOM group has been utilized in their syntheses. In screening of deprotection conditions of the BOM group of uridine ureido nitrogen under Pd-mediated hydrogenation conditions, we realized that the addition of water to the (i)PrOH-based hydrogenation conditions can suppress the formation of over-reduced uridine derivatives and the addition of HCO(2)H (0.5%) dramatically improve the reaction rate. An optimized hydrogenation condition described here can be applicable to the BOM-deprotections of a wide range of uridine derivatives.

摘要

苄氧甲基(BOM)基团已广泛应用于各种天然和非天然产物的合成中。BOM基团也是保护尿苷脲基氮的少数选择之一。然而,使用钯催化剂通过多相条件对尿苷衍生物的BOM基团进行氢解裂解尚未实现。钯介导的氢化条件形成的不良副产物之一是尿嘧啶部分的C5-C6双键饱和的过度还原产物。迄今为止,我们已经合成了多种含尿苷的抗菌剂,其中BOM基团已用于它们的合成中。在筛选钯介导的氢化条件下尿苷脲基氮的BOM基团的脱保护条件时,我们发现向基于异丙醇的氢化条件中加入水可以抑制过度还原的尿苷衍生物的形成,加入0.5%的甲酸可显著提高反应速率。这里描述的优化氢化条件可适用于多种尿苷衍生物的BOM脱保护。

相似文献

1
A reliable Pd-mediated hydrogenolytic deprotection of BOM group of uridine ureido nitrogen.
Tetrahedron Lett. 2012 Jul 18;53(29):3758-3762. doi: 10.1016/j.tetlet.2012.05.035. Epub 2012 May 12.
4
A new protecting group and linker for uridine ureido nitrogen.
Tetrahedron. 2012 Jun 17;68(24):4797-4804. doi: 10.1016/j.tet.2012.03.121. Epub 2012 Apr 9.
5
7
Stereoselective synthesis of uridine-derived nucleosyl amino acids.
J Org Chem. 2011 Dec 16;76(24):10083-98. doi: 10.1021/jo201935w. Epub 2011 Nov 21.
9
A Convenient Protecting Group for Uridine Ureido Nitrogen: (4,4'-Bisfluorophenyl)methoxymethyl group.
Synthesis (Stuttg). 2021 Aug;53(15):2643-2650. doi: 10.1055/a-1464-2473. Epub 2021 Mar 25.

引用本文的文献

1
A Convenient Protecting Group for Uridine Ureido Nitrogen: (4,4'-Bisfluorophenyl)methoxymethyl group.
Synthesis (Stuttg). 2021 Aug;53(15):2643-2650. doi: 10.1055/a-1464-2473. Epub 2021 Mar 25.
2
1-(1-Arylethylpiperidin-4-yl)thymine Analogs as Antimycobacterial TMPK Inhibitors.
Molecules. 2020 Jun 17;25(12):2805. doi: 10.3390/molecules25122805.
3
Stereocontrolled Total Synthesis of Muraymycin D1 Having a Dual Mode of Action against Mycobacterium tuberculosis.
J Am Chem Soc. 2016 Oct 5;138(39):12975-12980. doi: 10.1021/jacs.6b07395. Epub 2016 Sep 26.
4
Improved synthesis of capuramycin and its analogues.
Chemistry. 2013 Oct 4;19(41):13847-58. doi: 10.1002/chem.201302389. Epub 2013 Sep 6.
5
Selective esterifications of primary alcohols in a water-containing solvent.
Org Lett. 2012 Sep 21;14(18):4910-3. doi: 10.1021/ol3022337. Epub 2012 Aug 31.

本文引用的文献

1
A new protecting group and linker for uridine ureido nitrogen.
Tetrahedron. 2012 Jun 17;68(24):4797-4804. doi: 10.1016/j.tet.2012.03.121. Epub 2012 Apr 9.
2
Stereoselective synthesis of uridine-derived nucleosyl amino acids.
J Org Chem. 2011 Dec 16;76(24):10083-98. doi: 10.1021/jo201935w. Epub 2011 Nov 21.
3
Synthesis and structural characterization of 2'-fluoro-α-L-RNA-modified oligonucleotides.
Chembiochem. 2011 Aug 16;12(12):1904-11. doi: 10.1002/cbic.201100161. Epub 2011 Jul 4.
4
Biochemistry of uridine in plasma.
Clin Chim Acta. 2011 Sep 18;412(19-20):1712-24. doi: 10.1016/j.cca.2011.06.006. Epub 2011 Jun 14.
5
Total synthesis of (-)-muraymycin D2 and its epimer.
J Org Chem. 2010 Mar 5;75(5):1366-77. doi: 10.1021/jo9027193.
7
UGT genomic diversity: beyond gene duplication.
Drug Metab Rev. 2010 Feb;42(1):24-44. doi: 10.3109/03602530903210682.
8
Concise synthesis of capuramycin.
Org Lett. 2009 Jun 4;11(11):2393-6. doi: 10.1021/ol900458w.
9
Highly efficient O-glycosylations with p-tolyl thioribosides and p-TolSOTf.
J Org Chem. 2008 Dec 19;73(24):9767-70. doi: 10.1021/jo801408x.
10
Fine synthetic nucleoside chemistry based on nucleoside natural products synthesis.
Chem Pharm Bull (Tokyo). 2008 Aug;56(8):1059-72. doi: 10.1248/cpb.56.1059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验