Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA.
J Biol Chem. 2012 Aug 17;287(34):28526-36. doi: 10.1074/jbc.M112.367565. Epub 2012 Jun 19.
The severe phenotypic effects of altered glycosylation in the congenital muscular dystrophies, including Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1D, are caused by mutations resulting in altered glycans linked to proteins through O-linked mannose. A glycosyltransferase that branches O-Man, N-acetylglucosaminyltransferase Vb (GnT-Vb), is highly expressed in neural tissues. To understand the expression and function of GnT-Vb, we studied its expression during neuromorphogenesis and generated GnT-Vb null mice. A paralog of GnT-Vb, N-acetylglucosaminyltransferase (GnT-V), is expressed in many tissues and brain, synthesizing N-linked, β1,6-branched glycans, but its ability to synthesize O-mannosyl-branched glycans is unknown; conversely, although GnT-Vb can synthesize N-linked glycans in vitro, its contribution to their synthesis in vivo is unknown. Our results showed that deleting both GnT-V and GnT-Vb results in the total loss of both N-linked and O-Man-linked β1,6-branched glycans. GnT-V null brains lacked N-linked, β1,6-glycans but had normal levels of O-Man β1,6-branched structures, showing that GnT-Vb could not compensate for the loss of GnT-V. By contrast, GnT-Vb null brains contained normal levels of N-linked β1,6-glycans but low levels of some O-Man β1,6-branched glycans. Therefore, GnT-V could partially compensate for GnT-Vb activity in vivo. We found no apparent change in α-dystroglycan binding of glycan-specific antibody IIH6C4 or binding to laminin in GnT-Vb null mice. These results demonstrate that GnT-V is involved in synthesizing branched O-mannosyl glycans in brain, but the function of these branched O-mannosyl structures is unresolved using mice that lack these glycosyltransferases.
在先天性肌营养不良症中,包括沃克-沃伯格综合征、肌肉眼脑疾病、福山先天性肌营养不良症和先天性肌营养不良症 1D,糖基化改变的严重表型效应是由导致与蛋白质通过 O-连接甘露糖连接的改变聚糖的突变引起的。一种分支 O-Man 的糖基转移酶,N-乙酰氨基葡萄糖基转移酶 Vb(GnT-Vb),在神经组织中高度表达。为了了解 GnT-Vb 的表达和功能,我们研究了它在神经形态发生过程中的表达,并生成了 GnT-Vb 缺失小鼠。GnT-Vb 的一个旁系同源物,N-乙酰氨基葡萄糖基转移酶(GnT-V),在许多组织和大脑中表达,合成 N-连接的,β1,6-分支聚糖,但它合成 O-甘露糖分支聚糖的能力是未知的;相反,尽管 GnT-Vb 可以在体外合成 N-连接的聚糖,但它在体内合成这些聚糖的贡献是未知的。我们的结果表明,同时缺失 GnT-V 和 GnT-Vb 会导致 N-连接和 O-Man 连接的β1,6-分支聚糖完全缺失。GnT-V 缺失的大脑缺乏 N-连接的,β1,6-聚糖,但 O-Manβ1,6-分支结构正常,表明 GnT-Vb 不能代偿 GnT-V 的缺失。相比之下,GnT-Vb 缺失的大脑含有正常水平的 N-连接的β1,6-聚糖,但一些 O-Manβ1,6-分支聚糖水平较低。因此,GnT-V 可以在体内部分代偿 GnT-Vb 的活性。我们在 GnT-Vb 缺失的小鼠中没有发现聚糖特异性抗体 IIH6C4 的 α-肌营养不良蛋白结合或与层粘连蛋白结合的明显变化。这些结果表明,GnT-V 参与合成脑内分支 O-甘露糖聚糖,但缺乏这些糖基转移酶的小鼠中这些分支 O-甘露糖结构的功能仍未解决。