Suppr超能文献

神经元特异性 N-乙酰氨基葡萄糖转移酶 Vb(GnT-Vb/IX)的发育表达及其体内糖基产物与同工酶 GnT-V 的比较鉴定。

Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V.

机构信息

Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA.

出版信息

J Biol Chem. 2012 Aug 17;287(34):28526-36. doi: 10.1074/jbc.M112.367565. Epub 2012 Jun 19.

Abstract

The severe phenotypic effects of altered glycosylation in the congenital muscular dystrophies, including Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1D, are caused by mutations resulting in altered glycans linked to proteins through O-linked mannose. A glycosyltransferase that branches O-Man, N-acetylglucosaminyltransferase Vb (GnT-Vb), is highly expressed in neural tissues. To understand the expression and function of GnT-Vb, we studied its expression during neuromorphogenesis and generated GnT-Vb null mice. A paralog of GnT-Vb, N-acetylglucosaminyltransferase (GnT-V), is expressed in many tissues and brain, synthesizing N-linked, β1,6-branched glycans, but its ability to synthesize O-mannosyl-branched glycans is unknown; conversely, although GnT-Vb can synthesize N-linked glycans in vitro, its contribution to their synthesis in vivo is unknown. Our results showed that deleting both GnT-V and GnT-Vb results in the total loss of both N-linked and O-Man-linked β1,6-branched glycans. GnT-V null brains lacked N-linked, β1,6-glycans but had normal levels of O-Man β1,6-branched structures, showing that GnT-Vb could not compensate for the loss of GnT-V. By contrast, GnT-Vb null brains contained normal levels of N-linked β1,6-glycans but low levels of some O-Man β1,6-branched glycans. Therefore, GnT-V could partially compensate for GnT-Vb activity in vivo. We found no apparent change in α-dystroglycan binding of glycan-specific antibody IIH6C4 or binding to laminin in GnT-Vb null mice. These results demonstrate that GnT-V is involved in synthesizing branched O-mannosyl glycans in brain, but the function of these branched O-mannosyl structures is unresolved using mice that lack these glycosyltransferases.

摘要

在先天性肌营养不良症中,包括沃克-沃伯格综合征、肌肉眼脑疾病、福山先天性肌营养不良症和先天性肌营养不良症 1D,糖基化改变的严重表型效应是由导致与蛋白质通过 O-连接甘露糖连接的改变聚糖的突变引起的。一种分支 O-Man 的糖基转移酶,N-乙酰氨基葡萄糖基转移酶 Vb(GnT-Vb),在神经组织中高度表达。为了了解 GnT-Vb 的表达和功能,我们研究了它在神经形态发生过程中的表达,并生成了 GnT-Vb 缺失小鼠。GnT-Vb 的一个旁系同源物,N-乙酰氨基葡萄糖基转移酶(GnT-V),在许多组织和大脑中表达,合成 N-连接的,β1,6-分支聚糖,但它合成 O-甘露糖分支聚糖的能力是未知的;相反,尽管 GnT-Vb 可以在体外合成 N-连接的聚糖,但它在体内合成这些聚糖的贡献是未知的。我们的结果表明,同时缺失 GnT-V 和 GnT-Vb 会导致 N-连接和 O-Man 连接的β1,6-分支聚糖完全缺失。GnT-V 缺失的大脑缺乏 N-连接的,β1,6-聚糖,但 O-Manβ1,6-分支结构正常,表明 GnT-Vb 不能代偿 GnT-V 的缺失。相比之下,GnT-Vb 缺失的大脑含有正常水平的 N-连接的β1,6-聚糖,但一些 O-Manβ1,6-分支聚糖水平较低。因此,GnT-V 可以在体内部分代偿 GnT-Vb 的活性。我们在 GnT-Vb 缺失的小鼠中没有发现聚糖特异性抗体 IIH6C4 的 α-肌营养不良蛋白结合或与层粘连蛋白结合的明显变化。这些结果表明,GnT-V 参与合成脑内分支 O-甘露糖聚糖,但缺乏这些糖基转移酶的小鼠中这些分支 O-甘露糖结构的功能仍未解决。

相似文献

4
Demonstration of the expression and the enzymatic activity of N-acetylglucosaminyltransferase IX in the mouse brain.
Biochim Biophys Acta. 2006 Apr;1760(4):678-84. doi: 10.1016/j.bbagen.2005.11.019. Epub 2005 Dec 27.
6
Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination.
J Neurosci. 2013 Jun 12;33(24):10037-47. doi: 10.1523/JNEUROSCI.3137-12.2013.
10
N-acetylglucosaminyltranferase VB expression enhances beta1 integrin- dependent PC12 neurite outgrowth on laminin and collagen.
J Neurochem. 2006 May;97(4):947-56. doi: 10.1111/j.1471-4159.2006.03785.x. Epub 2006 Apr 5.

引用本文的文献

1
Advances in total glycomic analysis including sialylated sub-glycan isomers by SALSA method.
BBA Adv. 2025 Jan 28;7:100144. doi: 10.1016/j.bbadva.2025.100144. eCollection 2025.
2
Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies.
J Mol Neurosci. 2025 Feb 25;75(1):28. doi: 10.1007/s12031-025-02320-z.
3
Saturation mutagenesis-reinforced functional assays for disease-related genes.
Cell. 2024 Nov 14;187(23):6707-6724.e22. doi: 10.1016/j.cell.2024.08.047. Epub 2024 Sep 25.
4
Regulation of intracellular activity of N-glycan branching enzymes in mammals.
J Biol Chem. 2024 Jul;300(7):107471. doi: 10.1016/j.jbc.2024.107471. Epub 2024 Jun 13.
6
Protein O-mannosylation: one sugar, several pathways, many functions.
Glycobiology. 2023 Dec 25;33(11):911-926. doi: 10.1093/glycob/cwad067.
7
Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors.
Biochim Biophys Acta Gen Subj. 2022 Jun;1866(6):130118. doi: 10.1016/j.bbagen.2022.130118. Epub 2022 Mar 4.
8
Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues.
Nat Commun. 2022 Jan 12;13(1):275. doi: 10.1038/s41467-021-27781-9.
9
3D Structure and Function of Glycosyltransferases Involved in -glycan Maturation.
Int J Mol Sci. 2020 Jan 9;21(2):437. doi: 10.3390/ijms21020437.
10
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V.
Nat Commun. 2018 Aug 23;9(1):3380. doi: 10.1038/s41467-018-05931-w.

本文引用的文献

1
Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE.
Science. 2012 Jan 6;335(6064):93-6. doi: 10.1126/science.1214115.
2
Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications.
J Biol Chem. 2011 Sep 9;286(36):31875-84. doi: 10.1074/jbc.M111.251173. Epub 2011 Jul 19.
3
Glycomic analyses of mouse models of congenital muscular dystrophy.
J Biol Chem. 2011 Jun 17;286(24):21180-90. doi: 10.1074/jbc.M110.203281. Epub 2011 Apr 1.
7
Site mapping and characterization of O-glycan structures on alpha-dystroglycan isolated from rabbit skeletal muscle.
J Biol Chem. 2010 Aug 6;285(32):24882-91. doi: 10.1074/jbc.M110.126474. Epub 2010 May 27.
9
O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding.
Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验