Suppr超能文献

基于饱和突变增强的疾病相关基因功能分析

Saturation mutagenesis-reinforced functional assays for disease-related genes.

机构信息

Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.

Department of Genetics, Yale School of Medicine, New Haven, CT, USA.

出版信息

Cell. 2024 Nov 14;187(23):6707-6724.e22. doi: 10.1016/j.cell.2024.08.047. Epub 2024 Sep 25.

Abstract

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.

摘要

致病基因突变的解读仍然是人类遗传学中的一个挑战。目前,深度突变扫描方法的成本和复杂性是实现疾病相关基因中变体的全基因组分辨率的障碍。我们的框架,饱和诱变增强功能分析(SMuRF),提供了简单且具有成本效益的饱和诱变,结合精简的功能分析,以增强对未解决变体的解读。将 SMuRF 应用于神经肌肉疾病基因 FKRP 和 LARGE1,我们为所有可能的编码单核苷酸变体生成了功能评分,这有助于解决临床上报告的意义不明的变体。SMuRF 还可用于预测疾病严重程度、确定关键结构区域,并为开发计算预测器提供训练数据集。总的来说,我们的方法以具有成本效益的方式为疾病基因提供了从变体到功能的见解,这种方法可以被标准研究实验室广泛实施。

相似文献

1
Saturation mutagenesis-reinforced functional assays for disease-related genes.
Cell. 2024 Nov 14;187(23):6707-6724.e22. doi: 10.1016/j.cell.2024.08.047. Epub 2024 Sep 25.
3
Deep mutational scanning of proteins in mammalian cells.
Cell Rep Methods. 2023 Nov 20;3(11):100641. doi: 10.1016/j.crmeth.2023.100641. Epub 2023 Nov 13.
4
A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships.
Am J Hum Genet. 2018 May 3;102(5):943-955. doi: 10.1016/j.ajhg.2018.03.018. Epub 2018 Apr 26.
5
Integrating deep mutational scanning and low-throughput mutagenesis data to predict the impact of amino acid variants.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad073. Epub 2023 Sep 18.
6
Massively Parallel Functional Analysis of BRCA1 RING Domain Variants.
Genetics. 2015 Jun;200(2):413-22. doi: 10.1534/genetics.115.175802. Epub 2015 Mar 30.
8
Panel-Based Exome Sequencing for Neuromuscular Disorders as a Diagnostic Service.
J Neuromuscul Dis. 2019;6(2):241-258. doi: 10.3233/JND-180376.
10
Reducing uncertainty in genetic testing with Saturation Genome Editing.
Med Genet. 2022 Nov 29;34(4):297-304. doi: 10.1515/medgen-2022-2159. eCollection 2022 Dec.

引用本文的文献

1
2
Development of patient-specific iPSC-based epilepsy models and identification of differentially expressed genes for disease mechanisms.
Front Neurosci. 2025 Jun 17;19:1582255. doi: 10.3389/fnins.2025.1582255. eCollection 2025.
5
Saturation mapping of variant effects using DNA repair reporters.
bioRxiv. 2025 Mar 6:2025.03.01.640912. doi: 10.1101/2025.03.01.640912.
6
Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards.
J Neurol Neurosurg Psychiatry. 2024 Oct 16;95(11):992-1001. doi: 10.1136/jnnp-2024-333436.

本文引用的文献

1
Misfolding of fukutin-related protein (FKRP) variants in congenital and limb girdle muscular dystrophies.
Front Mol Biosci. 2023 Dec 7;10:1279700. doi: 10.3389/fmolb.2023.1279700. eCollection 2023.
2
A genomic mutational constraint map using variation in 76,156 human genomes.
Nature. 2024 Jan;625(7993):92-100. doi: 10.1038/s41586-023-06045-0. Epub 2023 Dec 6.
3
Accurate proteome-wide missense variant effect prediction with AlphaMissense.
Science. 2023 Sep 22;381(6664):eadg7492. doi: 10.1126/science.adg7492.
4
Systematically testing human HMBS missense variants to reveal mechanism and pathogenic variation.
Am J Hum Genet. 2023 Oct 5;110(10):1769-1786. doi: 10.1016/j.ajhg.2023.08.012. Epub 2023 Sep 19.
5
Genome-wide prediction of disease variant effects with a deep protein language model.
Nat Genet. 2023 Sep;55(9):1512-1522. doi: 10.1038/s41588-023-01465-0. Epub 2023 Aug 10.
6
Deep structured learning for variant prioritization in Mendelian diseases.
Nat Commun. 2023 Jul 13;14(1):4167. doi: 10.1038/s41467-023-39306-7.
7
SUNi mutagenesis: Scalable and uniform nicking for efficient generation of variant libraries.
PLoS One. 2023 Jul 7;18(7):e0288158. doi: 10.1371/journal.pone.0288158. eCollection 2023.
8
An Atlas of Variant Effects to understand the genome at nucleotide resolution.
Genome Biol. 2023 Jul 3;24(1):147. doi: 10.1186/s13059-023-02986-x.
10
The landscape of tolerated genetic variation in humans and primates.
Science. 2023 Jun 2;380(6648):eabn8153. doi: 10.1126/science.abn8197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验