Burgess Stephen, Thompson Simon G
Department of Public Health &Primary Care, Strangeways Research Laboratory, Cambridge, UK
Department of Public Health &Primary Care, Strangeways Research Laboratory, Cambridge, UK.
Stat Methods Med Res. 2016 Feb;25(1):272-93. doi: 10.1177/0962280212451882. Epub 2012 Jun 19.
Mendelian randomisation is an epidemiological method for estimating causal associations from observational data by using genetic variants as instrumental variables. Typically the genetic variants explain only a small proportion of the variation in the risk factor of interest, and so large sample sizes are required, necessitating data from multiple sources. Meta-analysis based on individual patient data requires synthesis of studies which differ in many aspects. A proposed Bayesian framework is able to estimate a causal effect from each study, and combine these using a hierarchical model. The method is illustrated for data on C-reactive protein and coronary heart disease (CHD) from the C-reactive protein CHD Genetics Collaboration (CCGC). Studies from the CCGC differ in terms of the genetic variants measured, the study design (prospective or retrospective, population-based or case-control), whether C-reactive protein was measured, the time of C-reactive protein measurement (pre- or post-disease), and whether full or tabular data were shared. We show how these data can be combined in an efficient way to give a single estimate of causal association based on the totality of the data available. Compared to a two-stage analysis, the Bayesian method is able to incorporate data on 23% additional participants and 51% more events, leading to a 23-26% gain in efficiency.
孟德尔随机化是一种流行病学方法,通过使用基因变异作为工具变量,从观察性数据中估计因果关联。通常,基因变异仅解释了感兴趣的风险因素中一小部分的变异,因此需要大样本量,这就需要来自多个来源的数据。基于个体患者数据的荟萃分析需要综合许多方面存在差异的研究。一个提议的贝叶斯框架能够从每项研究中估计因果效应,并使用层次模型将这些效应进行合并。以来自C反应蛋白冠心病遗传学协作组(CCGC)的C反应蛋白和冠心病(CHD)数据为例说明了该方法。CCGC的研究在测量的基因变异、研究设计(前瞻性或回顾性、基于人群或病例对照)、是否测量了C反应蛋白、C反应蛋白测量时间(疾病前或疾病后)以及是否共享完整数据或表格数据等方面存在差异。我们展示了如何以一种有效的方式将这些数据进行合并,以便根据可用数据的总体情况给出因果关联的单一估计。与两阶段分析相比,贝叶斯方法能够纳入另外23%参与者的数据和51%更多事件的数据,从而使效率提高23% - 26%。