Suppr超能文献

对具有二元结局的孟德尔随机化研究中的个体参与者数据进行Meta分析的方法。

Methods for meta-analysis of individual participant data from Mendelian randomisation studies with binary outcomes.

作者信息

Burgess Stephen, Thompson Simon G

机构信息

Department of Public Health &Primary Care, Strangeways Research Laboratory, Cambridge, UK

Department of Public Health &Primary Care, Strangeways Research Laboratory, Cambridge, UK.

出版信息

Stat Methods Med Res. 2016 Feb;25(1):272-93. doi: 10.1177/0962280212451882. Epub 2012 Jun 19.

Abstract

Mendelian randomisation is an epidemiological method for estimating causal associations from observational data by using genetic variants as instrumental variables. Typically the genetic variants explain only a small proportion of the variation in the risk factor of interest, and so large sample sizes are required, necessitating data from multiple sources. Meta-analysis based on individual patient data requires synthesis of studies which differ in many aspects. A proposed Bayesian framework is able to estimate a causal effect from each study, and combine these using a hierarchical model. The method is illustrated for data on C-reactive protein and coronary heart disease (CHD) from the C-reactive protein CHD Genetics Collaboration (CCGC). Studies from the CCGC differ in terms of the genetic variants measured, the study design (prospective or retrospective, population-based or case-control), whether C-reactive protein was measured, the time of C-reactive protein measurement (pre- or post-disease), and whether full or tabular data were shared. We show how these data can be combined in an efficient way to give a single estimate of causal association based on the totality of the data available. Compared to a two-stage analysis, the Bayesian method is able to incorporate data on 23% additional participants and 51% more events, leading to a 23-26% gain in efficiency.

摘要

孟德尔随机化是一种流行病学方法,通过使用基因变异作为工具变量,从观察性数据中估计因果关联。通常,基因变异仅解释了感兴趣的风险因素中一小部分的变异,因此需要大样本量,这就需要来自多个来源的数据。基于个体患者数据的荟萃分析需要综合许多方面存在差异的研究。一个提议的贝叶斯框架能够从每项研究中估计因果效应,并使用层次模型将这些效应进行合并。以来自C反应蛋白冠心病遗传学协作组(CCGC)的C反应蛋白和冠心病(CHD)数据为例说明了该方法。CCGC的研究在测量的基因变异、研究设计(前瞻性或回顾性、基于人群或病例对照)、是否测量了C反应蛋白、C反应蛋白测量时间(疾病前或疾病后)以及是否共享完整数据或表格数据等方面存在差异。我们展示了如何以一种有效的方式将这些数据进行合并,以便根据可用数据的总体情况给出因果关联的单一估计。与两阶段分析相比,贝叶斯方法能够纳入另外23%参与者的数据和51%更多事件的数据,从而使效率提高23% - 26%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验