Suppr超能文献

贝叶斯方法在基于遗传工具变量估计因果关系的荟萃分析中的应用。

Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables.

机构信息

MRC Biostatistics Unit, Cambridge University, UK.

出版信息

Stat Med. 2010 May 30;29(12):1298-311. doi: 10.1002/sim.3843.

Abstract

Genetic markers can be used as instrumental variables, in an analogous way to randomization in a clinical trial, to estimate the causal relationship between a phenotype and an outcome variable. Our purpose is to extend the existing methods for such Mendelian randomization studies to the context of multiple genetic markers measured in multiple studies, based on the analysis of individual participant data. First, for a single genetic marker in one study, we show that the usual ratio of coefficients approach can be reformulated as a regression with heterogeneous error in the explanatory variable. This can be implemented using a Bayesian approach, which is next extended to include multiple genetic markers. We then propose a hierarchical model for undertaking a meta-analysis of multiple studies, in which it is not necessary that the same genetic markers are measured in each study. This provides an overall estimate of the causal relationship between the phenotype and the outcome, and an assessment of its heterogeneity across studies. As an example, we estimate the causal relationship of blood concentrations of C-reactive protein on fibrinogen levels using data from 11 studies. These methods provide a flexible framework for efficient estimation of causal relationships derived from multiple studies. Issues discussed include weak instrument bias, analysis of binary outcome data such as disease risk, missing genetic data, and the use of haplotypes.

摘要

遗传标记可被用作工具变量,以类似于临床试验中随机化的方式,来估计表型和结果变量之间的因果关系。我们的目的是基于个体参与者数据的分析,将现有的针对这种孟德尔随机化研究的方法扩展到在多个研究中测量多个遗传标记的情况。首先,对于一个研究中的单个遗传标记,我们证明常用的系数比方法可以重新表述为解释变量存在异质误差的回归。这可以使用贝叶斯方法来实现,然后将其扩展到包括多个遗传标记。然后,我们提出了一个用于对多个研究进行荟萃分析的层次模型,其中不必在每个研究中测量相同的遗传标记。这提供了表型和结果之间因果关系的总体估计,并评估了其在研究间的异质性。作为一个例子,我们使用来自 11 项研究的数据估计了 C 反应蛋白在纤维蛋白原水平上的血液浓度对其的因果关系。这些方法为从多个研究中得出的因果关系的有效估计提供了灵活的框架。讨论的问题包括弱工具偏差、疾病风险等二元结果数据的分析、遗传数据缺失以及单倍型的使用。

相似文献

2
Methods for meta-analysis of individual participant data from Mendelian randomisation studies with binary outcomes.
Stat Methods Med Res. 2016 Feb;25(1):272-93. doi: 10.1177/0962280212451882. Epub 2012 Jun 19.
4
Designs combining instrumental variables with case-control: estimating principal strata causal effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1355/1557-4679.1355.xml. doi: 10.2202/1557-4679.1355.
6
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.
Int J Epidemiol. 2015 Apr;44(2):512-25. doi: 10.1093/ije/dyv080. Epub 2015 Jun 6.
7
Bayesian network-based Mendelian randomization for variant prioritization and phenotypic causal inference.
Hum Genet. 2024 Oct;143(9-10):1081-1094. doi: 10.1007/s00439-024-02640-x. Epub 2024 Feb 21.
8
Missing data methods in Mendelian randomization studies with multiple instruments.
Am J Epidemiol. 2011 Nov 1;174(9):1069-76. doi: 10.1093/aje/kwr235. Epub 2011 Sep 30.
10
Avoiding bias from weak instruments in Mendelian randomization studies.
Int J Epidemiol. 2011 Jun;40(3):755-64. doi: 10.1093/ije/dyr036. Epub 2011 Mar 16.

引用本文的文献

1
Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome.
Am J Respir Crit Care Med. 2020 Jan 1;201(1):47-56. doi: 10.1164/rccm.201810-2033OC.
2
Epidemiology, genetic epidemiology and Mendelian randomisation: more need than ever to attend to detail.
Hum Genet. 2020 Jan;139(1):121-136. doi: 10.1007/s00439-019-02027-3. Epub 2019 May 27.
3
Meta-analysis and Mendelian randomization: A review.
Res Synth Methods. 2019 Dec;10(4):486-496. doi: 10.1002/jrsm.1346. Epub 2019 Apr 23.
4
A Bayesian approach to Mendelian randomization with multiple pleiotropic variants.
Biostatistics. 2020 Jan 1;21(1):86-101. doi: 10.1093/biostatistics/kxy027.

本文引用的文献

2
C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.
Lancet. 2010 Jan 9;375(9709):132-40. doi: 10.1016/S0140-6736(09)61717-7. Epub 2009 Dec 22.
3
Meta-analysis of Mendelian randomization studies incorporating all three genotypes.
Stat Med. 2008 Dec 30;27(30):6570-82. doi: 10.1002/sim.3423.
5
Does high C-reactive protein concentration increase atherosclerosis? The Whitehall II Study.
PLoS One. 2008 Aug 20;3(8):e3013. doi: 10.1371/journal.pone.0003013.
7
Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
Int J Epidemiol. 2008 Oct;37(5):1161-8. doi: 10.1093/ije/dyn080. Epub 2008 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验