Suppr超能文献

PMeS:基于增强特征编码方案的甲基化位点预测。

PMeS: prediction of methylation sites based on enhanced feature encoding scheme.

机构信息

Department of Chemistry, Nanchang University, Nanchang, People's Republic of China.

出版信息

PLoS One. 2012;7(6):e38772. doi: 10.1371/journal.pone.0038772. Epub 2012 Jun 15.

Abstract

Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a specificity of 93.18%, an accuracy of 92.82% and a Matthew's correlation coefficient of 85.69% for arginine as well as a sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew's correlation coefficient of 78.68% for lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx.

摘要

蛋白质甲基化主要发生在赖氨酸和精氨酸残基上,具有许多重要的生物学功能,包括基因调控和信号转导。鉴于它们在基因表达中重要的参与作用,蛋白质甲基化及其调控酶与多种人类疾病状态有关,如癌症、冠心病和神经退行性疾病。因此,鉴定甲基化位点对于各种相关疾病的药物设计非常有帮助。在这项研究中,我们开发了一种称为 PMeS 的方法,通过增强特征编码方案和支持向量机来改进蛋白质甲基化位点的预测。增强特征编码方案由稀疏特性编码、归一化范德华体积、位置权重氨基酸组成和可及表面积组成。PMeS 在 10 倍交叉验证中对精氨酸的灵敏度为 92.45%、特异性为 93.18%、准确性为 92.82%和马修斯相关系数为 85.69%,对赖氨酸的灵敏度为 84.38%、特异性为 93.94%、准确性为 89.16%和马修斯相关系数为 78.68%,表现出了有前景的性能。与其他现有方法相比,PMeS 提供了更好的预测性能和更强的稳健性。可以预期,PMeS 可能有助于指导未来鉴定感兴趣的蛋白质中潜在甲基化位点的实验。在线服务可在 http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc0/3376144/3e6806f1920d/pone.0038772.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验