Department of Marine Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
Cell Tissue Res. 2012 Aug;349(2):517-25. doi: 10.1007/s00441-012-1426-4. Epub 2012 May 22.
The remarkable totipotent stem-cell-based regeneration capacities of the Platyhelminthes have brought them into the focus of stem cell and regeneration research. Although selected platyhelminth groups are among the best-studied invertebrates, our data provide new insights into regenerative processes in the most basally branching group of the Platyhelminthes, the Catenulida. The mouth- and gutless free-living catenulid flatworm Paracatenula galateia harbors intracellular bacterial symbionts in its posterior body region, the trophosome region, accounting for up to 50% of the volume. Following decapitation of this flatworm, we have analyzed the behavior of the amputated fragments and any anterior and posterior regeneration. Using an EdU-pulse-chase/BrdU-pulse thymidine analog double-labeling approach combined with immunohistochemistry, we show that neoblasts are the main drivers of the regeneration processes. During anterior (rostrum) regeneration, EdU-pulse-chase-labeled cells aggregate inside the regenerating rostrum, whereas BrdU pulse-labeling before fixation indicates clusters of S-phase neoblasts at the same position. In parallel, serotonergic nerves reorganize and the brain regenerates. In completely regenerated animals, the original condition with S-phase neoblasts being restricted to the body region posterior to the brain is restored. In contrast, no posterior regeneration or growth of the trophosome region in anterior fragments cut a short distance posterior to the brain has been observed. Our data thus reveal interesting aspects of the cellular processes underlying the regeneration of the emerging catenulid-bacteria symbiosis model P. galateia and show that a neoblast stem cell system is indeed a plesiomorphic feature of basal platyhelminths.
扁形动物的全能干细胞再生能力非常显著,因此它们成为了干细胞和再生研究的焦点。尽管一些扁形动物群体是研究最多的无脊椎动物之一,但我们的数据为最基础的扁形动物分支——腔肠动物门,提供了再生过程的新见解。自由生活的腔肠动物无腔扁形虫 Paracatenula galateia 的后体区域——营养体区域,存在着体内共生细菌,其体积可达 50%。在对这种扁形虫进行断头处理后,我们分析了断片的行为以及任何前后部的再生情况。我们使用 EdU 脉冲追踪/BrdU 脉冲胸腺嘧啶类似物双重标记方法结合免疫组织化学技术,证明了成体干细胞是再生过程的主要驱动力。在前部(吻部)再生过程中,EdU 脉冲追踪标记的细胞聚集在再生的吻部内部,而在固定之前进行 BrdU 脉冲标记则表明 S 期成体干细胞在同一位置形成簇。与此同时,血清素能神经发生重组,大脑也在再生。在完全再生的动物中,恢复了原始状态,即 S 期成体干细胞仅限于大脑后部的身体区域。相比之下,在前部断片(距离大脑短距离切割)中没有观察到后部再生或营养体区域的生长。因此,我们的数据揭示了新兴腔肠动物-细菌共生模型 P. galateia 再生背后的细胞过程的有趣方面,并表明成体干细胞系统确实是基础扁形动物的原始特征。