Suppr超能文献

ROC 曲线的扩展和 AUC 最优分类。

An extension of the receiver operating characteristic curve and AUC-optimal classification.

机构信息

Faculty of Systems Information Science, Department of Complex and Intelligent Systems, Future University Hakodate, Hakodate, Hokkaido 041-8655, Japan.

出版信息

Neural Comput. 2012 Oct;24(10):2789-824. doi: 10.1162/NECO_a_00336. Epub 2012 Jun 26.

Abstract

While most proposed methods for solving classification problems focus on minimization of the classification error rate, we are interested in the receiver operating characteristic (ROC) curve, which provides more information about classification performance than the error rate does. The area under the ROC curve (AUC) is a natural measure for overall assessment of a classifier based on the ROC curve. We discuss a class of concave functions for AUC maximization in which a boosting-type algorithm including RankBoost is considered, and the Bayesian risk consistency and the lower bound of the optimum function are discussed. A procedure derived by maximizing a specific optimum function has high robustness, based on gross error sensitivity. Additionally, we focus on the partial AUC, which is the partial area under the ROC curve. For example, in medical screening, a high true-positive rate to the fixed lower false-positive rate is preferable and thus the partial AUC corresponding to lower false-positive rates is much more important than the remaining AUC. We extend the class of concave optimum functions for partial AUC optimality with the boosting algorithm. We investigated the validity of the proposed method through several experiments with data sets in the UCI repository.

摘要

虽然大多数用于解决分类问题的方法都集中在最小化分类错误率上,但我们对接收器工作特性(ROC)曲线感兴趣,因为它比错误率提供了更多关于分类性能的信息。ROC 曲线下的面积(AUC)是基于 ROC 曲线对分类器进行整体评估的自然度量。我们讨论了一类用于 AUC 最大化的凹函数,其中包括 RankBoost 的提升算法,并讨论了贝叶斯风险一致性和最优函数的下界。通过最大化特定最优函数得出的过程具有基于总体误差敏感性的高稳健性。此外,我们关注部分 AUC,即 ROC 曲线的部分面积。例如,在医学筛查中,固定较低的假阳性率的高真阳性率是可取的,因此对应于较低假阳性率的部分 AUC 比剩余的 AUC 重要得多。我们使用提升算法为部分 AUC 最优性扩展了凹最优函数的类。我们通过在 UCI 存储库中的数据集进行了多项实验,验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验