Suppr超能文献

频率拓扑关系揭示了电荷密度沿外毛细胞的外侧壁变化。

Tonotopic relationships reveal the charge density varies along the lateral wall of outer hair cells.

机构信息

Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Biophys J. 2012 Jun 20;102(12):2715-24. doi: 10.1016/j.bpj.2012.04.054. Epub 2012 Jun 19.

Abstract

Outer hair cells amplify and improve the frequency selectivity of sound within the mammalian cochlea through a sound-evoked receptor potential that induces an electromechanical response in their lateral wall membrane. We experimentally show that the membrane area and linear membrane capacitance of outer hair cells increases exponentially with the electrically evoked voltage-dependent charge movement (Q(T)) and peak membrane capacitance (C(peak)). We determine the size of the different functional regions (e.g., lateral wall, synaptic basal pole) of the polarized cells from the tonotopic relationships. We then establish that Q(T) and C(peak) increase with the logarithm of the lateral wall area (A(LW)) and determine from the functions that the charge (σ(LW,) pC/μm(2)) and peak (ρ(LW,) pF/μm(2)) densities vary inversely with A(LW) (σ(LW) = 1.3/A(LW) and ρ(LW) = 9/A(LW)). This shows contrary to conventional wisdom that σ(LW) and ρ(LW) are not constant along the length of an individual outer hair cell.

摘要

外毛细胞通过声音诱发的感受器电位放大和改善哺乳动物耳蜗中的声音频率选择性,这种感受器电位在外毛细胞的侧壁膜中引起机电响应。我们通过实验表明,外毛细胞的膜面积和线性膜电容与电诱发的电压依赖性电荷运动(Q(T))和峰值膜电容(C(peak))呈指数增长。我们从音位关系确定极化细胞的不同功能区(例如,侧壁、突触基底极)的大小。然后,我们确定 Q(T)和 C(peak)随侧壁面积(A(LW))的对数增加,并从函数中确定电荷(σ(LW,) pC/μm(2))和峰值(ρ(LW,) pF/μm(2))密度与 A(LW) 成反比(σ(LW) = 1.3/A(LW)和 ρ(LW) = 9/A(LW))。这表明与传统观念相反,σ(LW)和 ρ(LW)在外毛细胞的长度上不是恒定的。

相似文献

1
Tonotopic relationships reveal the charge density varies along the lateral wall of outer hair cells.
Biophys J. 2012 Jun 20;102(12):2715-24. doi: 10.1016/j.bpj.2012.04.054. Epub 2012 Jun 19.
3
Effects of lipophilic ions on outer hair cell membrane capacitance and motility.
J Membr Biol. 1998 Nov 15;166(2):111-8. doi: 10.1007/s002329900453.
4
5
Electrically driven motor in the outer hair cell: effect of a mechanical constraint.
Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7244-9. doi: 10.1073/pnas.96.13.7244.
6
Two distinct Ca(2+)-dependent signaling pathways regulate the motor output of cochlear outer hair cells.
J Neurosci. 2000 Aug 15;20(16):5940-8. doi: 10.1523/JNEUROSCI.20-16-05940.2000.
7
Negative membrane capacitance of outer hair cells: electromechanical coupling near resonance.
Sci Rep. 2017 Sep 21;7(1):12118. doi: 10.1038/s41598-017-12411-6.
8
Membrane prestin expression correlates with the magnitude of prestin-associated charge movement.
Hear Res. 2016 Sep;339:50-9. doi: 10.1016/j.heares.2016.05.016. Epub 2016 Jun 1.
9
Voltage-dependent changes in specific membrane capacitance caused by prestin, the outer hair cell lateral membrane motor.
Pflugers Arch. 2002 May;444(1-2):99-106. doi: 10.1007/s00424-002-0804-2. Epub 2002 Feb 20.
10
Reversible inhibition of voltage-dependent outer hair cell motility and capacitance.
J Neurosci. 1991 Oct;11(10):3096-110. doi: 10.1523/JNEUROSCI.11-10-03096.1991.

引用本文的文献

1
Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation.
Biophys J. 2024 Oct 1;123(19):3421-3432. doi: 10.1016/j.bpj.2024.08.007. Epub 2024 Aug 14.
2
Prestin's fast motor kinetics is essential for mammalian cochlear amplification.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2217891120. doi: 10.1073/pnas.2217891120. Epub 2023 Mar 9.
3
A parametric blueprint for optimum cochlear outer hair cell design.
J R Soc Interface. 2023 Feb;20(199):20220762. doi: 10.1098/rsif.2022.0762. Epub 2023 Feb 15.
4
The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea.
J Assoc Res Otolaryngol. 2023 Apr;24(2):129-145. doi: 10.1007/s10162-022-00884-w. Epub 2023 Feb 1.
7
Scientist and data architect collaborate to curate and archive an inner ear electrophysiology data collection.
PLoS One. 2019 Oct 18;14(10):e0223984. doi: 10.1371/journal.pone.0223984. eCollection 2019.
8
Diflunisal inhibits prestin by chloride-dependent mechanism.
PLoS One. 2017 Aug 17;12(8):e0183046. doi: 10.1371/journal.pone.0183046. eCollection 2017.
10
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Biophys J. 2016 Jun 7;110(11):2551-2561. doi: 10.1016/j.bpj.2016.05.002.

本文引用的文献

1
Membrane cholesterol modulates cochlear electromechanics.
Pflugers Arch. 2011 Jun;461(6):677-86. doi: 10.1007/s00424-011-0942-5. Epub 2011 Mar 4.
2
Expression patterns of estrogen receptors in the central auditory system change in prepubertal and aged mice.
Neuroscience. 2010 Nov 10;170(4):1270-81. doi: 10.1016/j.neuroscience.2010.08.010. Epub 2010 Aug 22.
4
Prestin forms oligomer with four mechanically independent subunits.
Brain Res. 2010 May 28;1333:28-35. doi: 10.1016/j.brainres.2010.03.070. Epub 2010 Mar 27.
5
Estrogen receptors in the central auditory system of male and female mice.
Neuroscience. 2010 Feb 3;165(3):923-33. doi: 10.1016/j.neuroscience.2009.11.020. Epub 2009 Nov 20.
8
Effects on capacitance by overexpression of membrane proteins.
Biochem Biophys Res Commun. 2008 May 16;369(4):1022-6. doi: 10.1016/j.bbrc.2008.02.153. Epub 2008 Mar 10.
9
Developmental expression of the outer hair cell motor prestin in the mouse.
J Membr Biol. 2007 Jan;215(1):49-56. doi: 10.1007/s00232-007-9004-5. Epub 2007 Apr 6.
10
Voltage-dependent capacitance of human embryonic kidney cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041930. doi: 10.1103/PhysRevE.73.041930. Epub 2006 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验