Griep Mark H, Winder Eric M, Lueking Donald R, Garrett Gregory A, Karna Shashi P, Friedrich Craig R
Department of Mechanical Engineering Mechanics, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton, MI 49931, USA.
Mol Biol Int. 2012;2012:910707. doi: 10.1155/2012/910707. Epub 2012 Jun 10.
An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.
研究表明了核壳型CdSe/ZnS量子点(QD)与光学蛋白细菌视紫红质(bR)之间的能量转移关系,证明了能量转移与距离有关,在3.5纳米和8.5纳米的分离距离下,分别有88.2%和51.1%的量子点能量转移到bR单体上。荧光寿命测量分离出了除光吸收机制之外的非辐射能量转移,随着bR的整合,量子点的有效激发态寿命从18.0纳秒降至13.3纳秒,这表明在3.5纳米的分离距离下,Förster共振能量转移占转移的量子点能量的26.1%。所建立的直接能量转移机制有可能扩大bR的光谱范围以及该蛋白可利用的能量的灵敏度,增加其随后的光电流产生,这是bR在太阳能电池、生物传感、生物计算、光电子和成像技术中的适用性的一个重大潜在扩展。