Suppr超能文献

化学计量比组装的半导体量子点-富勒烯缀合物中Förster 共振能量转移和电子转移的竞争。

Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.

机构信息

Optical Sciences Division, Code 5611, ‡Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory , Washington, DC 20375, United States.

出版信息

ACS Nano. 2013 Oct 22;7(10):9489-505. doi: 10.1021/nn403872x. Epub 2013 Oct 15.

Abstract

Understanding how semiconductor quantum dots (QDs) engage in photoinduced energy transfer with carbon allotropes is necessary for enhanced performance in solar cells and other optoelectronic devices along with the potential to create new types of (bio)sensors. Here, we systematically investigate energy transfer interactions between C60 fullerenes and four different QDs, composed of CdSe/ZnS (type I) and CdSe/CdS/ZnS (quasi type II), with emission maxima ranging from 530 to 630 nm. C60-pyrrolidine tris-acid was first coupled to the N-terminus of a hexahistidine-terminated peptide via carbodiimide chemistry to yield a C60-labeled peptide (pepC60). This peptide provided the critical means to achieve ratiometric self-assembly of the QD-(pepC60) nanoheterostructures by exploiting metal affinity coordination to the QD surface. Controlled QD-(pepC60)N bioconjugates were prepared by discretely increasing the ratio (N) of pepC60 assembled per QD in mixtures of dimethyl sulfoxide and buffer; this mixed organic/aqueous approach helped alleviate issues of C60 solubility. An extensive set of control experiments were initially performed to verify the specific and ratiometric nature of QD-(pepC60)N assembly. Photoinitiated energy transfer in these hybrid organic-inorganic systems was then interrogated using steady-state and time-resolved fluorescence along with ultrafast transient absorption spectroscopy. Coordination of pepC60 to the QD results in QD PL quenching that directly tracks with the number of peptides displayed around the QD. A detailed photophysical analysis suggests a competition between electron transfer and Förster resonance energy transfer from the QD to the C60 that is dependent upon a complex interplay of pepC60 ratio per QD, the presence of underlying spectral overlap, and contributions from QD size. These results highlight several important factors that must be considered when designing QD-donor/C60-acceptor systems for potential optoelectronic and biosensing applications.

摘要

了解半导体量子点 (QD) 如何与碳同素异形体发生光诱导能量转移,对于提高太阳能电池和其他光电设备的性能以及创造新型 (生物) 传感器是必要的。在这里,我们系统地研究了 C60 富勒烯与四种不同 QD 之间的能量转移相互作用,这四种 QD 由 CdSe/ZnS(I 型)和 CdSe/CdS/ZnS(准 II 型)组成,发射最大值范围从 530nm 到 630nm。首先,C60-吡咯烷三酸通过碳二亚胺化学与六组氨酸末端肽的 N 端偶联,得到 C60 标记的肽(pepC60)。通过利用金属亲和配位到 QD 表面,这种肽为实现 QD-(pepC60)纳米杂化物的比色自组装提供了关键手段。通过在二甲基亚砜和缓冲液的混合物中离散增加 pepC60 组装到每个 QD 的比例 (N),制备了受控的 QD-(pepC60)N 生物缀合物;这种混合的有机/水方法有助于缓解 C60 溶解度问题。最初进行了广泛的对照实验来验证 QD-(pepC60)N 组装的特异性和比色性质。然后使用稳态和时间分辨荧光以及超快瞬态吸收光谱研究了这些杂化有机-无机系统中的光引发能量转移。pepC60 与 QD 的配位导致 QD PL 猝灭,这直接与围绕 QD 显示的肽的数量相关。详细的光物理分析表明,电子转移和从 QD 到 C60 的福斯特共振能量转移之间存在竞争,这取决于 pepC60 与 QD 的比例、存在的底层光谱重叠以及 QD 尺寸的贡献之间的复杂相互作用。这些结果强调了在设计用于潜在光电和生物传感应用的 QD-供体/C60-受体系统时必须考虑的几个重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验