Wong A J
Joseph Henry Laboratories of Physics, Princeton University, NJ 08544.
J Theor Biol. 1990 Oct 21;146(4):523-43. doi: 10.1016/s0022-5193(05)80377-7.
We develop in two ways an existing spin-glass model of prebiotic polymer evolution. First, by choosing the environment J in a prescribed manner, similar to neural network presciptions, we may create an environment which favors a linearly independent set of evolutionary niches (Ea). That is, we may control which polymer "species" will evolve in our system. Computer simulations confirm this result. We obtain a quantitative value for the sharpness of a niche. Second, we extend the model by allowing a surviving polymer to act upon--to "remold"--its environment; the nature of the environmental action is governed by the "molding" matrix M. When the mold M is the identity matrix, the feedback algorithm reduces to a Hebb learning algorithm form, and a surviving polymer acts to enhance its own survival prospects. Molds having a structure analogous to (temporal) associative memories in neural networks can generate autocatalytic species or can exhibit symbiotic interspecies relationships.
我们通过两种方式拓展了现有的益生元聚合物进化自旋玻璃模型。首先,通过以一种规定的方式选择环境J,类似于神经网络的规定方式,我们可以创建一个有利于一组线性独立的进化生态位(Ea)的环境。也就是说,我们可以控制哪些聚合物“物种”将在我们的系统中进化。计算机模拟证实了这一结果。我们获得了一个生态位锐度的定量值。其次,我们通过允许存活的聚合物作用于——“重塑”——其环境来扩展模型;环境作用的性质由“塑造”矩阵M控制。当模具M为单位矩阵时,反馈算法简化为赫布学习算法形式,并且存活的聚合物会采取行动来增强自身的生存前景。具有类似于神经网络中(时间)关联记忆结构的模具可以产生自催化物种,或者可以表现出共生的物种间关系。