Data Storage Institute, Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608, Singapore.
Opt Lett. 2012 Jun 15;37(12):2361-3. doi: 10.1364/OL.37.002361.
A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.
首次提出了一种复杂包络(CE)交替方向隐式(ADI)有限时域差分(FDTD)方法,用于主动光子器件的高效模拟,该方法可以实现光与物质的自洽相互作用以及电磁场的演化。(据我们所知)。主动媒质(AM)采用有效的载流子速率方程多级系统进行建模,以产生正确的载流子分布,适合于准确地对半导体/固态媒质进行建模。为了将 AM 包含在 CE-ADI-FDTD 方法中,首先建立了一个涉及 AM 中 CE 场的一阶微分系统。然后将包含 AM 参数的系统矩阵分为两个时变子矩阵,然后将其用于高效的 ADI 分裂公式中。通过半导体微盘激光器的模拟验证了,带有 AM 的所提出的 CE-ADI-FDTD 方法的时间复杂度为相应显式 FDTD 方法的 22%。