Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Blood. 2012 Aug 2;120(5):1118-29. doi: 10.1182/blood-2012-02-412379. Epub 2012 Jun 26.
One mechanism for disrupting the MLL gene in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is through partial tandem duplication (MLL-PTD); however, the mechanism by which MLL-PTD contributes to MDS and AML development and maintenance is currently unknown. Herein, we investigated hematopoietic stem/progenitor cell (HSPC) phenotypes of Mll-PTD knock-in mice. Although HSPCs (Lin(-)Sca1(+)Kit(+) (LSK)/SLAM(+) and LSK) in Mll(PTD/WT) mice are reduced in absolute number in steady state because of increased apoptosis, they have a proliferative advantage in colony replating assays, CFU-spleen assays, and competitive transplantation assays over wild-type HSPCs. The Mll(PTD/WT)-derived phenotypic short-term (ST)-HSCs/multipotent progenitors and granulocyte/macrophage progenitors have self-renewal capability, rescuing hematopoiesis by giving rise to long-term repopulating cells in recipient mice with an unexpected myeloid differentiation blockade and lymphoid-lineage bias. However, Mll(PTD/WT) HSPCs never develop leukemia in primary or recipient mice, suggesting that additional genetic and/or epigenetic defects are necessary for full leukemogenic transformation. Thus, the Mll-PTD aberrantly alters HSPCs, enhances self-renewal, causes lineage bias, and blocks myeloid differentiation. These findings provide a framework by which we can ascertain the underlying pathogenic role of MLL-PTD in the clonal evolution of human leukemia, which should facilitate improved therapies and patient outcomes.
一种导致骨髓增生异常综合征(MDS)和急性髓系白血病(AML)中 MLL 基因发生结构改变的机制是通过部分串联重复(MLL-PTD);然而,目前尚不清楚 MLL-PTD 如何促进 MDS 和 AML 的发生和维持。在此,我们研究了 Mll-PTD 敲入小鼠的造血干/祖细胞(HSPC)表型。尽管由于凋亡增加,Mll(PTD/WT) 小鼠的 HSPC(Lin(-)Sca1(+)Kit(+)(LSK)/SLAM(+) 和 LSK)在稳态下的绝对数量减少,但它们在集落 replating 测定、CFU-脾测定和竞争性移植测定中比野生型 HSPC 具有增殖优势。Mll(PTD/WT)-衍生的表型短期(ST)-HSCs/多能祖细胞和粒细胞/巨噬细胞祖细胞具有自我更新能力,通过在受体小鼠中产生长期重殖细胞来挽救造血功能,而受体小鼠出现异常的髓系分化阻断和淋系偏向。然而,Mll(PTD/WT) HSPC 从未在原发性或受体小鼠中发展为白血病,这表明完全致白血病转化还需要额外的遗传和/或表观遗传缺陷。因此,Mll-PTD 异常改变 HSPC,增强自我更新,导致谱系偏向,并阻断髓系分化。这些发现为我们确定 MLL-PTD 在人类白血病克隆进化中的潜在致病作用提供了一个框架,这应该有助于改善治疗方法和患者预后。