Département de Chimie Moléculaire, UMR-5250, Laboratoire de Chimie Inorganique Rédox, Institut de Chimie Moléculaire de Grenoble FR- CNRS-2607, Université Joseph Fourier Grenoble 1/CNRS, BP-53, 38041 Grenoble Cedex 9, France.
Langmuir. 2012 Jul 24;28(29):10916-24. doi: 10.1021/la301709d. Epub 2012 Jul 11.
A new method based on the electrochemical oxidation of thiols was used to easily generate multilayer assemblies of coordination complexes on a gold surface. For this purpose, two complexes bearing two anchoring groups for surface attachment have been prepared: Ru(tpySH)(2) (1) and Fe(tpySH)(2) (2) (tpySH = 4'-(2-(p-phenoxy)ethanethiol)-2,2':6',2″-terpyridine). Cyclic voltammetry of 1 in CH(3)CN exhibits two successive oxidation processes. The first is irreversible and attributed to the oxidation of the thiol substituents, whereas the second is reversible and corresponds to the 1 e(-) metal-centered oxidation. In the case of 2 both processes are superimposed. Monolayers of 1 or 2 have been formed on gold electrodes by spontaneous adsorption from micromolar solutions of the complexes in CH(3)CN. SAMs (self-assembled monolayers) exhibit redox behavior similar to the complexes in solution. The high surface coverage value obtained (Γ = 6 × 10(-10) and 4 × 10(-10) mol cm(-2) for 1 and 2, respectively) is consistent with a vertical orientation for the complexes; thus, one thiol is bound to the gold electrode, with the second unreacted thiol moiety exposed to the outer surface. Successive cyclic voltammetry induced a layer-by-layer nanostructural growth at the surface of the SAMs, and this is presumably due to the electrochemical formation of disulfide bonds, where the thiol moieties play a double role of both an anchoring group and an electroactive coupling agent. The conditions of the deposition are studied in detail. Modified electrodes containing both 1 and 2 alternatively can be easily prepared following this new approach. The film proved to be stable, displaying a similar current/voltage response for more than 10 repeating cycles in oxidation up to 0.97 V vs Ag/AgNO(3) (10(-2) M).
一种基于电化学氧化硫醇的新方法被用于在金表面上轻松生成配位配合物的多层组装。为此,制备了两个带有两个用于表面附着的锚固基团的配合物:Ru(tpySH)(2)(1)和Fe(tpySH)(2)(2)(tpySH=4'-(2-(对苯氧基)乙硫醇)-2,2':6',2″-三联吡啶)。1 在 CH(3)CN 中的循环伏安法显示出两个连续的氧化过程。第一个是不可逆的,归因于硫醇取代基的氧化,而第二个是可逆的,对应于 1 e(-)金属中心氧化。对于 2,两个过程都叠加在一起。1 或 2 的单层通过自组装从微米摩尔浓度的配合物在 CH(3)CN 中的溶液中自发吸附在金电极上形成。SAM(自组装单层)表现出与溶液中配合物相似的氧化还原行为。获得的高表面覆盖率值(Γ分别为 6×10(-10)和 4×10(-10)mol cm(-2))与复合物的垂直取向一致;因此,一个硫醇与金电极结合,而第二个未反应的硫醇部分暴露于外表面。连续的循环伏安法在 SAM 的表面诱导了逐层纳米结构生长,这可能是由于二硫键的电化学形成所致,其中硫醇部分起到锚固基团和电活性偶联剂的双重作用。详细研究了沉积条件。按照这种新方法,可以轻松制备含有 1 和 2 交替的修饰电极。该膜被证明是稳定的,在氧化至 0.97 V vs Ag/AgNO(3)(10(-2)M)的情况下,超过 10 个重复循环显示出相似的电流/电压响应。