Suppr超能文献

解析 hERG 通道:延迟整流钾电流快速成分的分子基础。

Deciphering hERG channels: molecular basis of the rapid component of the delayed rectifier potassium current.

机构信息

Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

J Mol Cell Cardiol. 2012 Sep;53(3):369-74. doi: 10.1016/j.yjmcc.2012.06.011. Epub 2012 Jun 26.

Abstract

The rapid component of the delayed rectifier potassium current (I(Kr)), encoded by the ether-a-go-go-related gene (ERG1, officially denominated as KCNH2), is a major contributor to repolarization in the mammalian heart. Acute (e.g. drug-induced) and chronic (e.g. inherited genetic disorder) disruptions of this current can lead to prolongation of the action potential and potentiate occurrence of lethal arrhythmias. Many cardiac and non-cardiac drugs show high affinity for the I(Kr) channel and it is therefore extensively studied during safety pharmacology. The unique biophysical and pharmacological properties of the I(Kr) channel are largely recapitulated by expressing the human variant (hERG1a) in overexpressing systems. hERG1a channels are tetramers consisting of four 1159 amino acid long proteins and have electrophysiological properties similar, but not identical, to native I(Kr). In the search for an explanation to the discrepancies between I(Kr) and hERG1a channels, two alternative hERG1 proteins have been found. Alternative transcription of hERG1 leads to a protein with a 56 amino acid shorter N-terminus, known as hERG1b. hERG1b can form channels alone or coassemble with hERG1a. Alternative splicing leads to an alternate C-terminus and a protein known as hERGuso. hERGuso and hERG1b regulate hERG1a channel trafficking, functional expression and channel kinetics. Expression of hERGuso leads to a reduced number of channels at the plasma membrane and thereby reduces current density. On the contrary, co-assembly with hERG1b alters channel kinetics resulting in more available channels and a larger current. These findings have implication for understanding mechanisms of disease, acute and chronic drug effects, and potential gender differences.

摘要

快速延迟整流钾电流(I(Kr))的成分,由醚-ago-ago 相关基因(ERG1,正式命名为 KCNH2)编码,是哺乳动物心脏复极化的主要贡献者。这种电流的急性(例如药物诱导)和慢性(例如遗传性遗传紊乱)中断会导致动作电位的延长,并增强致命性心律失常的发生。许多心脏和非心脏药物对 I(Kr)通道具有高亲和力,因此在安全药理学研究中广泛研究。I(Kr)通道的独特生物物理和药理学特性在很大程度上通过在过表达系统中表达人类变体(hERG1a)来概括。hERG1a 通道由四个 1159 个氨基酸长的蛋白质组成的四聚体组成,具有与天然 I(Kr)相似但不完全相同的电生理特性。在寻找 I(Kr)和 hERG1a 通道之间差异的解释时,发现了两种替代的 hERG1 蛋白。hERG1 的替代转录导致一种 N 端短 56 个氨基酸的蛋白质,称为 hERG1b。hERG1b 可以单独形成通道,也可以与 hERG1a 共组装。选择性剪接导致替代的 C 端和一种称为 hERGuso 的蛋白质。hERGuso 和 hERG1b 调节 hERG1a 通道运输、功能表达和通道动力学。hERGuso 的表达导致质膜上的通道数量减少,从而降低电流密度。相反,与 hERG1b 共组装会改变通道动力学,从而产生更多可用的通道和更大的电流。这些发现对理解疾病机制、急性和慢性药物效应以及潜在的性别差异具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验