Suppr超能文献

染料敏化 ZnO 太阳能电池模拟中的挑战:量子限制、能级排列和染料/半导体界面处的激发态性质。

Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.

机构信息

Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06213, Perugia, Italy.

出版信息

Phys Chem Chem Phys. 2012 Aug 14;14(30):10662-8. doi: 10.1039/c2cp41616f. Epub 2012 Jun 28.

Abstract

We report a first principles density functional theory/time-dependent density functional theory (DFT/TDDFT) computational investigation on a prototypical perylene dye anchored to realistic ZnO nanostructures, approaching the size of the ZnO nanowires used in dye-sensitized solar cells devices. DFT calculations were performed on (ZnO)(n) clusters of increasing size, with n up to 222, of 1.3 × 1.5 × 3.4 nm dimensions, and for the related dye-sensitized models. We show that quantum confinement in the ZnO nanostructures substantially affects the dye/semiconductor alignment of energy levels, with smaller ZnO models providing unfavourable electron injection. An increasing broadening of the dye LUMO is found moving to larger substrates, substantially contributing to the interfacial electronic coupling. TDDFT excited state calculations for the investigated dye@(ZnO)(222) system are fully consistent with experimental data, quantitatively reproducing the red-shift and broadening of the visible absorption spectrum observed for the ZnO-anchored dye compared to the dye in solution. TDDFT calculations on the fully interacting system also introduce a contribution to the dye/semiconductor admixture, due to configurational excited state mixing. Our results highlight the importance of quantum confinement in dye-sensitized ZnO interfaces, and provide the fundamental insight lying at the heart of the associated DSC devices.

摘要

我们报告了一种基于第一性原理密度泛函理论/时间依赖密度泛函理论(DFT/TDDFT)的计算研究,该研究针对一种典型的苝染料与实际 ZnO 纳米结构(接近用于染料敏化太阳能电池器件的 ZnO 纳米线的大小)进行了研究。在尺寸为 1.3×1.5×3.4nm 的(ZnO)(n)簇上进行了 DFT 计算,n 最大可达 222,并且对相关的染料敏化模型进行了计算。我们表明,在 ZnO 纳米结构中的量子限制会极大地影响能级的染料/半导体排列,较小的 ZnO 模型会提供不利的电子注入。发现染料的 LUMO 随着向更大的衬底移动而不断增宽,这对界面电子耦合有很大的贡献。对所研究的染料@(ZnO)(222)系统进行的 TDDFT 激发态计算与实验数据完全一致,定量地再现了与在溶液中的染料相比,在 ZnO 锚定的染料中观察到的可见光吸收光谱的红移和增宽。对完全相互作用的系统进行的 TDDFT 计算也会由于构象激发态混合而对染料/半导体混合物产生贡献。我们的结果强调了量子限制在染料敏化 ZnO 界面中的重要性,并提供了与相关 DSC 器件相关的核心基本见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验