Suppr超能文献

Rubisco 亚基在玉米叶肉细胞中的异位表达不能克服细胞类型特异性积累的障碍。

Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation.

机构信息

Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.

出版信息

Plant Physiol. 2012 Sep;160(1):419-32. doi: 10.1104/pp.112.195677. Epub 2012 Jun 28.

Abstract

In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RBCS expression. This resulted in Rubisco deficiency and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the previously documented transcriptional repression of RBCS in mesophyll cells is responsible for repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear version of the rbcL gene was created, encoding an epitope-tagged LS that was expressed in the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, and the tagged LS was readily incorporated into Rubisco complexes. However, neither immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle sheath chloroplasts.

摘要

在玉米(Zea mays)中,Rubisco 积累在束鞘但不在叶肉叶绿体中,但尚不清楚其细胞类型特异性表达的机制。为了探索叶绿体 rbcL 基因(编码 Rubisco 大亚基(LS))和两个核 RBCS 基因(编码小亚基(SS))的协调表达,使用 RNA 干扰来降低 RBCS 的表达。这导致 Rubisco 缺乏,并与 rbcL 的翻译抑制相关。因此,与 C3 植物一样,LS 的合成依赖于其组装伴侣 SS 的存在。为了检验先前在叶肉细胞中 RBCS 的转录抑制是导致 LS 在叶肉叶绿体中合成受阻的假说,在束鞘和叶肉细胞中表达了由泛素启动子驱动的 RBCS 基因。这并没有导致 Rubisco 在叶肉中积累,这表明即使存在异位 SS 表达,LS 的合成也受到阻碍。为了试图绕过这种推测的机制,创建了由泛素启动子驱动的核 rbcL 基因的变体,该基因编码一个带有表位标签的 LS,在存在或不存在 Ubi-RBCS 构建体的情况下表达。这两个转基因都得到了强烈表达,并且标记的 LS 很容易被整合到 Rubisco 复合物中。然而,免疫定位和生化方法都没有揭示 Rubisco 在叶肉细胞中的大量积累,这表明其组装或稳定性仍然存在持续的细胞类型特异性缺陷。我们得出结论,额外的细胞类型特异性因素将 Rubisco 表达限制在束鞘叶绿体中。

相似文献

1
Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation.
Plant Physiol. 2012 Sep;160(1):419-32. doi: 10.1104/pp.112.195677. Epub 2012 Jun 28.
2
Rubisco production in maize mesophyll cells through ectopic expression of subunits and chaperones.
J Exp Bot. 2021 Jun 22;72(13):4930-4937. doi: 10.1093/jxb/erab189.
3
The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells.
Plant Physiol. 2017 Dec;175(4):1624-1633. doi: 10.1104/pp.17.01346. Epub 2017 Oct 31.
6
7
Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6466-71. doi: 10.1073/pnas.0610586104. Epub 2007 Apr 2.
9
Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize.
Plant Cell. 2012 Aug;24(8):3435-46. doi: 10.1105/tpc.112.102012. Epub 2012 Aug 31.

引用本文的文献

3
Compartmentation of photosynthesis gene expression in C4 maize depends on time of day.
Plant Physiol. 2023 Nov 22;193(4):2306-2320. doi: 10.1093/plphys/kiad447.
4
The small subunit of Rubisco and its potential as an engineering target.
J Exp Bot. 2023 Jan 11;74(2):543-561. doi: 10.1093/jxb/erac309.
5
Rubisco feedback loop: control by epistasy of synthesis governs large subunit biosynthesis.
Plant Cell. 2021 Jul 2;33(5):1407-1408. doi: 10.1093/plcell/koab066.
6
Genome-Wide Characterization and Expression Analysis Provide Basis to the Biological Function of Cotton FBA Genes.
Front Plant Sci. 2021 Aug 19;12:696698. doi: 10.3389/fpls.2021.696698. eCollection 2021.
8
10
Increased Rubisco content in maize mitigates chilling stress and speeds recovery.
Plant Biotechnol J. 2020 Jun;18(6):1409-1420. doi: 10.1111/pbi.13306. Epub 2019 Dec 20.

本文引用的文献

1
Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize.
Plant Cell. 2012 Aug;24(8):3435-46. doi: 10.1105/tpc.112.102012. Epub 2012 Aug 31.
2
Evaluation of candidate reference genes for qPCR in maize.
J Plant Physiol. 2012 May 15;169(8):807-15. doi: 10.1016/j.jplph.2012.01.019. Epub 2012 Mar 27.
3
Initial characteristics of RbcX proteins from Arabidopsis thaliana.
Plant Mol Biol. 2011 Nov;77(4-5):447-59. doi: 10.1007/s11103-011-9823-8. Epub 2011 Sep 16.
4
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Plant Cell. 2011 Jun;23(6):2087-105. doi: 10.1105/tpc.111.086264. Epub 2011 Jun 24.
5
Independent and parallel recruitment of preexisting mechanisms underlying C₄ photosynthesis.
Science. 2011 Mar 18;331(6023):1436-9. doi: 10.1126/science.1201248.
7
The developmental dynamics of the maize leaf transcriptome.
Nat Genet. 2010 Dec;42(12):1060-7. doi: 10.1038/ng.703. Epub 2010 Oct 31.
8
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Plant Physiol. 2011 Jan;155(1):142-56. doi: 10.1104/pp.110.159442. Epub 2010 Jun 11.
9
The regulation of gene expression required for C4 photosynthesis.
Annu Rev Plant Biol. 2010;61:181-207. doi: 10.1146/annurev-arplant-042809-112238.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验