Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia.
Department of Horticulture, Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312.
Plant Cell. 2020 Sep;32(9):2898-2916. doi: 10.1105/tpc.20.00288. Epub 2020 Jul 9.
Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast gene and nuclear genes. Here we develop an RNAi- tobacco () master-line, tobRrΔS, for producing homogenous plant Rubisco by L-S operon chloroplast transformation. Four genotypes encoding alternative genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a gene whose codon use and 5' untranslated-region matched Additional tobacco genotypes produced here incorporated differing potato () - operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pS-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pS However, the βA-βB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pS-subunit, which reduced CE and CO/O specificity 40% and 15%, respectively. Returning the gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.
工程改良的 Rubisco 以增强光合作用受到叶绿体基因和核基因的替代位置的挑战。在这里,我们通过 L-S 操纵子叶绿体转化开发了一种产生同质植物 Rubisco 的 RNAi-烟草()主系,tobRrΔS。四种编码替代基因和毗邻 5'间基因序列的基因型表明,通过整合与叶绿体基因密码子使用和 5'非翻译区匹配的基因,Rubisco 产量最高(野生型的 50%)。这里产生的其他烟草基因型整合了不同的马铃薯()-操纵子,这些操纵子要么编码三种叶肉小亚基(pS1、pS2 和 pS3)之一,要么编码马铃薯毛状体 pS-亚基。与产生 pS1、pS2 或 pS3 的系相比,pS3-亚基导致马铃薯 Rubisco 产量降低约 15%。然而,pS3-亚基中的βA-βB 环 Asn-55-His 和 Lys-57-Ser 取代提高了羧化速率 13%和羧化效率(CE)17%,相对于整合 pS1 或 pS2-亚基的马铃薯 Rubisco。在产生马铃薯 Rubisco 的系中,烟草光合作用和生长受到的损害最大,其中包括整合 pS-亚基的系,其 CE 和 CO/O 特异性分别降低了 40%和 15%。将基因返回植物质体为在整个植物背景下引入和评估新型同质 Rubisco 复合物提供了有效的生物工程底盘。