Suppr超能文献

通过同时转化 Rubisco 大亚基和小亚基来改变植物光合作用和生长。

Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast Transformation of Rubisco Large and Small Subunits.

机构信息

Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia.

Department of Horticulture, Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312.

出版信息

Plant Cell. 2020 Sep;32(9):2898-2916. doi: 10.1105/tpc.20.00288. Epub 2020 Jul 9.

Abstract

Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast gene and nuclear genes. Here we develop an RNAi- tobacco () master-line, tobRrΔS, for producing homogenous plant Rubisco by L-S operon chloroplast transformation. Four genotypes encoding alternative genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a gene whose codon use and 5' untranslated-region matched Additional tobacco genotypes produced here incorporated differing potato () - operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pS-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pS However, the βA-βB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pS-subunit, which reduced CE and CO/O specificity 40% and 15%, respectively. Returning the gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.

摘要

工程改良的 Rubisco 以增强光合作用受到叶绿体基因和核基因的替代位置的挑战。在这里,我们通过 L-S 操纵子叶绿体转化开发了一种产生同质植物 Rubisco 的 RNAi-烟草()主系,tobRrΔS。四种编码替代基因和毗邻 5'间基因序列的基因型表明,通过整合与叶绿体基因密码子使用和 5'非翻译区匹配的基因,Rubisco 产量最高(野生型的 50%)。这里产生的其他烟草基因型整合了不同的马铃薯()-操纵子,这些操纵子要么编码三种叶肉小亚基(pS1、pS2 和 pS3)之一,要么编码马铃薯毛状体 pS-亚基。与产生 pS1、pS2 或 pS3 的系相比,pS3-亚基导致马铃薯 Rubisco 产量降低约 15%。然而,pS3-亚基中的βA-βB 环 Asn-55-His 和 Lys-57-Ser 取代提高了羧化速率 13%和羧化效率(CE)17%,相对于整合 pS1 或 pS2-亚基的马铃薯 Rubisco。在产生马铃薯 Rubisco 的系中,烟草光合作用和生长受到的损害最大,其中包括整合 pS-亚基的系,其 CE 和 CO/O 特异性分别降低了 40%和 15%。将基因返回植物质体为在整个植物背景下引入和评估新型同质 Rubisco 复合物提供了有效的生物工程底盘。

相似文献

引用本文的文献

7
Rubisco is evolving for improved catalytic efficiency and CO assimilation in plants.Rubisco 正在进化,以提高植物的催化效率和 CO 同化。
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2321050121. doi: 10.1073/pnas.2321050121. Epub 2024 Mar 5.

本文引用的文献

4
Genetic strategies for improving crop yields.遗传策略提高作物产量。
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
6
The Plant Translatome Surveyed by Ribosome Profiling.核糖体图谱分析调查的植物翻译组。
Plant Cell Physiol. 2019 Sep 1;60(9):1917-1926. doi: 10.1093/pcp/pcz059.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验