Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
J Chem Inf Model. 2012 Aug 27;52(8):2192-203. doi: 10.1021/ci300073m. Epub 2012 Jul 23.
Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term "Virtual Target Screening (VTS)", a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here, we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed.
计算方法涉及虚拟筛选,可以潜在地被用于发现对感兴趣的单个分子(MOI)的新生物分子靶标。然而,现有的评分函数可能无法准确地区分与 MOI 结合的蛋白质与蛋白质结构数据库中的更大的大分子。MOI 很可能与许多蛋白质靶标具有不同程度的预测结合亲和力。然而,将对接评分正确地解释为 MOI 与任何单个蛋白质对接的命中可能是有问题的。在我们的方法中,我们称之为“虚拟靶标筛选(VTS)”,一组小分子药物样分子被对接在蛋白质库中的每个结构上,以产生基准统计数据。这种校准为每个蛋白质提供了一个参考,以便可以识别 MOI 的命中。VTS 可以用作以下工具:药物重定位(重新定位)、特异性和毒性测试、识别潜在的代谢物、探测蛋白质结构的变构位点,以及测试具有相似化学型的聚焦库(MOI 集合)的选择性。为了验证我们的 VTS 方法,二十种激酶抑制剂被对接至一组校准的蛋白质结构。在这里,我们报告我们的结果,其中 VTS 预测蛋白质激酶作为命中,优先于我们数据库中的其他蛋白质。同时,为 VTS 开发了一个图形界面。