Suppr超能文献

一种使用 C 反应蛋白排除有症状 HIV 患者中痰涂片阴性结核病的模型。

A model to rule out smear-negative tuberculosis among symptomatic HIV patients using C-reactive protein.

机构信息

Ottawa Hospital Research Institute, University of Ottawa, Division of Respirology and Infectious Diseases, The Ottawa Hospital, Ottawa, Ontario, Canada.

出版信息

Int J Tuberc Lung Dis. 2012 Sep;16(9):1247-51. doi: 10.5588/ijtld.11.0743. Epub 2012 Jun 28.

Abstract

SETTING

Improved diagnostic algorithms for sputum smear-negative tuberculosis (SNTB) are needed to address the dramatic increase in SNTB in regions with high human immunodeficiency virus (HIV) prevalence.

OBJECTIVE

To determine whether the addition of C-reactive protein (CRP) to a prediction model using simple clinical criteria improves the diagnosis of SNTB among mostly antiretroviral-naïve adult HIV TB suspects in an out-patient setting.

DESIGN

A multiple logistic regression model was derived from a database of 228 HIV patients to predict the risk of SNTB using data from a previous prospective study.

RESULTS

The derived model demonstrated that male sex, night sweats, fever, low body mass index and anemia increased the probability of having SNTB. CRP improved the accuracy of the model (without CRP, area under the curve [AUC] 0.75, 95%CI 0.68-0.81 vs. model with CRP, AUC 0.81, 95%CI 0.76-0.87, P = 0.0014) to predict SNTB. Using reclassification tables, CRP correctly reclassified 27.9% of the patients (net reclassification improvement, P = 0.0005) into higher or lower risk categories. The strongest effect was seen in the reclassification improvement among patients with no TB, which was 20.6% (P = 0.0023).

CONCLUSION

CRP improved the performance of the prediction model in the diagnosis of SNTB in HIV patients, and may play a role in ruling out SNTB in this population. Prospective validation of this model is needed.

摘要

背景

需要改进痰涂片阴性结核病(SNTB)的诊断算法,以解决高 HIV 流行地区 SNTB 急剧增加的问题。

目的

确定在门诊环境中,是否可以通过添加 C 反应蛋白(CRP)到使用简单临床标准的预测模型来改善大多数未接受过抗逆转录病毒治疗的成人 HIV-TB 疑似患者的 SNTB 诊断。

设计

从一个包含 228 名 HIV 患者的数据库中得出一个多逻辑回归模型,使用之前前瞻性研究的数据来预测 SNTB 的风险。

结果

得出的模型表明,男性、夜间盗汗、发热、低体重指数和贫血会增加患有 SNTB 的可能性。CRP 提高了模型的准确性(无 CRP 时,曲线下面积 [AUC] 为 0.75,95%CI 为 0.68-0.81,而 CRP 时 AUC 为 0.81,95%CI 为 0.76-0.87,P=0.0014),以预测 SNTB。使用再分类表,CRP 将 27.9%的患者正确地重新分类为更高或更低的风险类别(净再分类改善,P=0.0005)。在无结核病患者中,再分类改善的效果最强,为 20.6%(P=0.0023)。

结论

CRP 提高了预测模型在 HIV 患者 SNTB 诊断中的性能,并且可能在该人群中排除 SNTB 方面发挥作用。需要对该模型进行前瞻性验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验