US Army Natick Soldier RD&E Center, RDNS-WSC, Kansas St, Natick, MA 01760-5018, USA.
J Food Sci. 2012 Aug;77(8):M458-65. doi: 10.1111/j.1750-3841.2012.02791.x. Epub 2012 Jul 2.
The enhanced quasi-chemical kinetics (EQCK) model is presented as a methodology to evaluate the nonlinear inactivation kinetics of baro-resistant Listeria monocytogenes in a surrogate protein food system by high-pressure processing (HPP) for various combinations of pressure (P= 207 to 414 MPa) and temperature (T= 20 to 50 °C). The EQCK model is based on ordinary differential equations derived from 6 "quasi-chemical reaction" steps. The EQCK model continuously fits the conventional stages of the microbial lifecycle: lag, growth, stationary phase, and death; and tailing. Depending on the conditions, the inactivation kinetics of L. monocytogenes by HPP show a lag, inactivation, and tailing. Accordingly, we developed a customized, 4-step subset version of the EQCK model sufficient to evaluate the HPP inactivation kinetics of L. monocytogenes and obtain values for the model parameters of lag (λ), inactivation rate (μ), rate constants (k), and "processing time" (tp). This latter parameter was developed uniquely to evaluate kinetics data showing tailing. Secondary models are developed by interrelating the fitting parameters with experimental parameters, and Monte Carlo simulations are used to evaluate parameter reproducibility. This 4-step model is also compared with the empirical Weibull and Polylog models. The success of the EQCK model (as its 4-step subset) for the HPP inactivation kinetics of baro-resistant L. monocytogenes showing tailing establishes several advantages of the EQCK modeling approach for investigating nonlinear microbial inactivation kinetics, and it has implications for determining mechanisms of bacterial spore inactivation by HPP.
Results of this study will be useful to the many segments of the food processing industry (ready-to-eat meats, fresh produce, seafood, dairy) concerned with ensuring the safety of consumers from the health hazards of Listeria monocytogenes, particularly through the use of emerging food preservation technologies such as high-pressure processing.
提出了增强准化学动力学(EQCK)模型,作为一种方法来评估在替代蛋白质食品系统中通过高压处理(HPP)对各种压力(P=207 至 414 MPa)和温度(T=20 至 50°C)组合的耐压李斯特菌的非线性失活动力学。EQCK 模型基于从 6 个“准化学反应”步骤推导出来的常微分方程。EQCK 模型连续拟合微生物生命周期的常规阶段:滞后、生长、静止期和死亡;和尾部。根据条件的不同,HPP 对李斯特菌的失活动力学表现出滞后、失活和尾部。因此,我们开发了 EQCK 模型的定制、四步子集版本,足以评估李斯特菌的 HPP 失活动力学并获得模型参数的滞后(λ)、失活率(μ)、速率常数(k)和“处理时间”(tp)的值。后一个参数是专门为评估表现出尾部的动力学数据而开发的。通过将拟合参数与实验参数相关联来开发二级模型,并使用蒙特卡罗模拟来评估参数的可重复性。还将四步模型与经验 Weibull 和 Polylog 模型进行了比较。EQCK 模型(及其四步子集)在表现出尾部的耐压李斯特菌的 HPP 失活动力学中的成功确立了 EQCK 建模方法在研究非线性微生物失活动力学方面的几个优势,并且对确定 HPP 对细菌孢子失活的机制具有重要意义。
本研究的结果将对食品加工业的许多领域(即食肉类、新鲜农产品、海鲜、乳制品)有用,这些领域都致力于通过使用高压处理等新兴食品保鲜技术来确保消费者免受李斯特菌健康危害的威胁。