Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straβe 38, 01187 Dresden, Germany.
Curr Biol. 2012 Aug 7;22(15):1381-90. doi: 10.1016/j.cub.2012.06.021. Epub 2012 Jun 28.
Endocytosis allows the import and distribution of cargo into a series of endosomes with distinct morphological and biochemical characteristics. Our current understanding of endocytic cargo trafficking is based on the kinetics of net cargo transport between endosomal compartments without considering individual endosomes. However, endosomes form a dynamic network of membranes undergoing fusion and fission, thereby continuously exchanging and redistributing cargo. The macroscopic kinetic properties, i.e., the properties of the endosomal network as a whole, result from the collective behaviors of many individual endosomes, a problem so far largely unaddressed.
Here, we developed a general theoretical framework to describe the dynamics of cargo distributions in the endosomal network. We combined the theory with quantitative experiments to study how the macroscopic kinetic properties of the endosomal network emerge from microscopic processes at the level of individual endosomes. We compared our theory predictions to experimental data in which dynamic distributions of endocytosed low-density lipoprotein (LDL) were quantified.
Our theory can quantitatively describe the observed cargo distributions as a function of time. Remarkably, the theory allows determining microscopic kinetic parameters such as the fusion rate between endosomes from still images of cargo distributions at different times of internalization. We show that this method is robust and sensitive because cargo distributions result from an average over many stochastic events in many cells. Our results provide theoretical and experimental support to the "funnel model" of endosome progression and suggest that the conversion of early to late endosomes is the major mode of LDL trafficking.
内吞作用允许货物被导入并分配到一系列具有不同形态学和生化特征的内体中。我们目前对内吞货物运输的理解是基于内体隔室之间净货物运输的动力学,而不考虑单个内体。然而,内体形成一个膜融合和裂变的动态网络,从而不断地交换和重新分配货物。宏观动力学特性,即整个内体网络的特性,是由许多单个内体的集体行为产生的,到目前为止,这个问题在很大程度上还没有得到解决。
在这里,我们开发了一个通用的理论框架来描述内体网络中货物分布的动力学。我们将该理论与定量实验相结合,研究了宏观动力学特性如何从单个内体水平的微观过程中产生。我们将我们的理论预测与实验数据进行了比较,这些实验数据定量地研究了内吞的低密度脂蛋白 (LDL) 的动态分布。
我们的理论可以定量地描述作为时间函数的观察到的货物分布。值得注意的是,该理论允许从内化不同时间的货物分布的静态图像中确定微观动力学参数,例如内体之间的融合速率。我们表明,这种方法是稳健和敏感的,因为货物分布是许多细胞中许多随机事件的平均值。我们的结果为内体进展的“漏斗模型”提供了理论和实验支持,并表明早期到晚期内体的转化是 LDL 运输的主要模式。