MacRaild Christopher A, Pedersen Marie Ø, Anders Robin F, Norton Raymond S
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
Biochim Biophys Acta. 2012 Nov;1818(11):2572-8. doi: 10.1016/j.bbamem.2012.06.015. Epub 2012 Jun 27.
With more than half the world's population living at risk of malaria infection, there is a strong demand for the development of an effective malaria vaccine. One promising vaccine candidate is merozoite surface protein 2 (MSP2), which is among the most abundant antigens of the blood stage of the Plasmodium falciparum parasite. In solution, MSP2 is intrinsically unstructured, but little is known about the conformation of native MSP2, which is GPI-anchored to the merozoite surface, or of the implications of that conformation for the immune response induced by MSP2. Initial NMR studies have shown that MSP2 interacts with lipid micelles through a highly conserved N-terminal domain. We have further developed these findings by investigating how different lipid environments affect the protein structure. All of the tested lipid preparations perturbed only the N-terminal part of MSP2. In DPC micelles this region adopts an α-helical structure which we have characterized in detail. Our findings suggest a possible mechanism by which lipid interactions might modulate immune recognition of the conserved N-terminus of MSP2, potentially explaining the apparent immunodominance of the central variable region of this important malaria antigen.
全球超过一半的人口面临疟疾感染风险,因此对开发有效的疟疾疫苗有强烈需求。一种有前景的疫苗候选物是裂殖子表面蛋白2(MSP2),它是恶性疟原虫血液阶段最丰富的抗原之一。在溶液中,MSP2本质上是无结构的,但对于天然MSP2(通过糖基磷脂酰肌醇锚定在裂殖子表面)的构象或该构象对MSP2诱导的免疫反应的影响知之甚少。最初的核磁共振研究表明,MSP2通过一个高度保守的N端结构域与脂质微团相互作用。我们通过研究不同的脂质环境如何影响蛋白质结构进一步拓展了这些发现。所有测试的脂质制剂仅干扰了MSP2的N端部分。在二癸基磷脂酰胆碱(DPC)微团中,该区域呈现出α螺旋结构,我们已对其进行了详细表征。我们的研究结果提示了一种可能的机制,通过该机制脂质相互作用可能调节对MSP2保守N端的免疫识别,这可能解释了这种重要疟疾抗原中央可变区明显的免疫显性。