Suppr超能文献

莲 phyB 突变体根部 JA-Ile 减少的其他原因。

Additional cause for reduced JA-Ile in the root of a Lotus japonicus phyB mutant.

机构信息

Department of Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Japan.

出版信息

Plant Signal Behav. 2012 Jul;7(7):746-8. doi: 10.4161/psb.20407. Epub 2012 Jul 1.

Abstract

Light is critical for supplying carbon for use in the energetically expensive process of nitrogen-fixing symbiosis between legumes and rhizobia. We recently showed that root nodule formation in phyB mutants [which have a constitutive shade avoidance syndrome (SAS) phenotype] was suppressed in white light, and that nodulation in wild-type is controlled by sensing the R/FR ratio through jasmonic acid (JA) signaling. We concluded that the cause of reduced root nodule formation in phyB mutants was the inhibition of JA-Ile production in root. Here we show that the shoot JA-Ile level of phyB mutants is higher than that of the wild-type strain MG20, suggesting that translocation of JA-Ile from shoot to root is impeded in the mutant. These results indicate that root nodule formation in phyB mutants is suppressed both by decreased JA-Ile production, caused by reduced JAR1 activity in root, and by reduced JA-Ile translocation from shoot to root.

摘要

光是为豆科植物和根瘤菌之间的固氮共生提供用于能量消耗的碳的关键因素。我们最近表明,phyB 突变体(具有组成型避荫综合征 (SAS) 表型)中根瘤的形成在白光下受到抑制,而野生型中根瘤的形成通过感知 R/FR 比值通过茉莉酸 (JA) 信号来控制。我们得出结论,phyB 突变体中根瘤形成减少的原因是根中 JA-Ile 产量的抑制。在这里,我们表明 phyB 突变体的地上 JA-Ile 水平高于野生型 MG20 菌株,这表明 JA-Ile 从地上向根的转运在突变体中受到阻碍。这些结果表明 phyB 突变体中根瘤的形成受到抑制,这是由于根中 JAR1 活性降低导致 JA-Ile 产量减少以及 JA-Ile 从地上向根的转运减少所致。

相似文献

1
Additional cause for reduced JA-Ile in the root of a Lotus japonicus phyB mutant.
Plant Signal Behav. 2012 Jul;7(7):746-8. doi: 10.4161/psb.20407. Epub 2012 Jul 1.
2
Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16837-42. doi: 10.1073/pnas.1105892108. Epub 2011 Sep 19.
3
Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus.
Plant Signal Behav. 2016 Jun 2;11(6):e1187356. doi: 10.1080/15592324.2016.1187356.
4
Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth.
Mol Plant. 2019 Oct 7;12(10):1383-1394. doi: 10.1016/j.molp.2019.05.013. Epub 2019 Jun 8.
6
Control of root nodule formation ensures sufficient shoot water availability in Lotus japonicus.
Plant Physiol. 2024 Jul 31;195(4):2542-2550. doi: 10.1093/plphys/kiae126.
7
9
Light induces jasmonate-isoleucine conjugation via OsJAR1-dependent and -independent pathways in rice.
Plant Cell Environ. 2014 Apr;37(4):827-39. doi: 10.1111/pce.12201. Epub 2013 Oct 16.
10
Leaf-Derived Jasmonate Mediates Water Uptake from Hydrated Cotton Roots under Partial Root-Zone Irrigation.
Plant Physiol. 2019 Jul;180(3):1660-1676. doi: 10.1104/pp.19.00315. Epub 2019 May 11.

引用本文的文献

1
Jasmonates Coordinate Secondary with Primary Metabolism.
Metabolites. 2023 Sep 13;13(9):1008. doi: 10.3390/metabo13091008.
2
The Role of Light-Regulated Auxin Signaling in Root Development.
Int J Mol Sci. 2023 Mar 9;24(6):5253. doi: 10.3390/ijms24065253.
3
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis.
Int J Mol Sci. 2023 Feb 9;24(4):3511. doi: 10.3390/ijms24043511.
4
Metabolism, signaling, and transport of jasmonates.
Plant Commun. 2021 Aug 11;2(5):100231. doi: 10.1016/j.xplc.2021.100231. eCollection 2021 Sep 13.
5
Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions.
Front Plant Sci. 2021 Mar 4;12:631810. doi: 10.3389/fpls.2021.631810. eCollection 2021.
6
Canopy Light Quality Modulates Stress Responses in Plants.
iScience. 2019 Dec 20;22:441-452. doi: 10.1016/j.isci.2019.11.035. Epub 2019 Nov 25.
7
Jasmonates: Multifunctional Roles in Stress Tolerance.
Front Plant Sci. 2016 Jun 15;7:813. doi: 10.3389/fpls.2016.00813. eCollection 2016.

本文引用的文献

1
Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16837-42. doi: 10.1073/pnas.1105892108. Epub 2011 Sep 19.
2
12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis.
Plant Cell Physiol. 2011 Jan;52(1):205-9. doi: 10.1093/pcp/pcq181. Epub 2010 Nov 19.
3
plenty, a novel hypernodulation mutant in Lotus japonicus.
Plant Cell Physiol. 2010 Sep;51(9):1425-35. doi: 10.1093/pcp/pcq115. Epub 2010 Aug 23.
4
Phytochrome functions in Arabidopsis development.
J Exp Bot. 2010;61(1):11-24. doi: 10.1093/jxb/erp304.
6
Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicus.
Mol Plant Microbe Interact. 2009 Mar;22(3):259-68. doi: 10.1094/MPMI-22-3-0259.
7
Shade avoidance.
New Phytol. 2008;179(4):930-944. doi: 10.1111/j.1469-8137.2008.02507.x. Epub 2008 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验