Analytical Research Center for Experimental Sciences, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.
Appl Microbiol Biotechnol. 2013 Apr;97(8):3419-27. doi: 10.1007/s00253-012-4201-2. Epub 2012 Jun 15.
Two types of hetero-oligomeric dye-linked L-proline dehydrogenases (α4β4 and αβγδ types) are expressed in the hyperthermophilic archaea belonging to Thermococcales. In both enzymes, the β subunit (PDHβ) is responsible for catalyzing L-proline dehydrogenation. The genes encoding the two enzyme types form respective clusters that are completely conserved among Pyrococcus and Thermococcus strains. To compare the enzymatic properties of PDHβs from α4β4- and αβγδ-type enzyme complexes, eight PDHβs (four of each type) from Pyrococcus furiosus DSM3638, Pyrococcus horikoshii OT-3, Thermococcus kodakaraensis KOD1 JCM12380 and Thermococcus profundus DSM9503 were expressed in Escherichia coli cells and purified to homogeneity using one-step Ni-chelating chromatography. The α4β4-type PDHβs showed greater thermostability than most of the αβγδ-type PDHβs: the former retained more than 80 % of their activity after heating at 70 °C for 20 min, while the latter showed different thermostabilities under the same conditions. In addition, the α4β4-type PDHβs utilized ferricyanide as the most preferable electron acceptor, whereas αβγδ-type PDHβs preferred 2, 6-dichloroindophenol, with one exception. These results indicate that the differences in the enzymatic properties of the PDHβs likely reflect whether they were from an αβγδ- or α4β4-type complex, though the wider divergence observed within αβγδ-type PDHβs based on the phylogenetic analysis may also be responsible for their inconsistent enzymatic properties. By contrast, differences in the kinetic parameters among the PDHβs did not reflect the complex type. Interestingly, the k cat value for free α4β4-type PDHβ from P. horikoshii was much larger than the value for the same subunit within the α4β4-complex. This indicates that the isolated PDHβ could be a useful element for an electrochemical system for detection of L-proline.
两种类型的异源寡聚染料连接 L-脯氨酸脱氢酶(α4β4 和 αβγδ 型)在属于 Thermococcales 的高温古菌中表达。在这两种酶中,β 亚基(PDHβ)负责催化 L-脯氨酸脱氢。编码这两种酶类型的基因形成各自的簇,在 Pyrococcus 和 Thermococcus 菌株中完全保守。为了比较α4β4-和αβγδ-型酶复合物中 PDHβ 的酶学性质,从 Pyrococcus furiosus DSM3638、Pyrococcus horikoshii OT-3、Thermococcus kodakaraensis KOD1 JCM12380 和 Thermococcus profundus DSM9503 中表达了 8 个 PDHβ(各 4 个)在大肠杆菌细胞中,并使用一步 Ni-螯合层析法将其纯化为均相。α4β4-型 PDHβ 的热稳定性大于大多数 αβγδ-型 PDHβ:前者在 70°C 加热 20 分钟后保留了超过 80%的活性,而后者在相同条件下表现出不同的热稳定性。此外,α4β4-型 PDHβ 利用铁氰化物作为最优选的电子受体,而 αβγδ-型 PDHβ 除了一个例外,更喜欢 2,6-二氯靛酚。这些结果表明,PDHβ 的酶学性质差异可能反映了它们是来自αβγδ-型还是α4β4-型复合物,尽管基于系统发育分析观察到的αβγδ-型 PDHβ 之间的更广泛差异也可能是导致其不一致的酶学性质的原因。相比之下,PDHβ 之间的动力学参数差异并不反映复合物类型。有趣的是,来自 P. horikoshii 的游离α4β4-型 PDHβ 的 kcat 值远大于其在α4β4-复合物中的相同亚基的值。这表明分离的 PDHβ 可以作为用于检测 L-脯氨酸的电化学系统的有用元件。