Suppr超能文献

阿维巴坦是一种共价的、可逆的、非β-内酰胺类β-内酰胺酶抑制剂。

Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor.

机构信息

Infection Innovative Medicines Unit, AstraZeneca Research & Development Boston, Waltham, MA 02451, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11663-8. doi: 10.1073/pnas.1205073109. Epub 2012 Jul 2.

Abstract

Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min(-1), which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant β-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among β-lactamase inhibitors.

摘要

阿维巴坦是一种β-内酰胺酶抑制剂,正在临床开发中,与β-内酰胺伙伴药物联合用于治疗包含革兰氏阴性菌的细菌感染。阿维巴坦是一种不含有β-内酰胺核心但保持与β-内酰胺酶靶标形成共价酰化能力的抑制剂结构类别。我们使用 TEM-1 酶,通过测量酰化的成键速率和去酰化的离键速率来表征阿维巴坦的抑制作用。去酰化离键速率为 0.045 min(-1),这允许研究从 TEM-1 的去酰化途径。通过 NMR 和 MS,我们表明去酰化通过完整阿维巴坦的再生而不是水解进行。除了 TEM-1 之外,另外四种临床上相关的β-内酰胺酶在被酰化后也被证明会释放出完整的阿维巴坦。我们表明,阿维巴坦是一种共价的、缓慢可逆的抑制剂,这是β-内酰胺酶抑制剂中一种独特的抑制机制。

相似文献

1
Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11663-8. doi: 10.1073/pnas.1205073109. Epub 2012 Jul 2.
4
Elucidating the Molecular Basis of Avibactam-Mediated Inhibition of Class A β-Lactamases.
Chemistry. 2020 Aug 3;26(43):9639-9651. doi: 10.1002/chem.202001261. Epub 2020 Jul 9.
5
Kinetics of avibactam inhibition against Class A, C, and D β-lactamases.
J Biol Chem. 2013 Sep 27;288(39):27960-71. doi: 10.1074/jbc.M113.485979. Epub 2013 Aug 2.
6
Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5818-5825. doi: 10.1073/pnas.1922203117. Epub 2020 Mar 2.
7
Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance.
Antimicrob Agents Chemother. 2014 Oct;58(10):5704-13. doi: 10.1128/AAC.03057-14. Epub 2014 Jul 14.
8
Avibactam and inhibitor-resistant SHV β-lactamases.
Antimicrob Agents Chemother. 2015 Jul;59(7):3700-9. doi: 10.1128/AAC.04405-14. Epub 2015 Feb 17.
9
The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam.
Future Med Chem. 2016 Jun;8(10):1063-84. doi: 10.4155/fmc-2016-0078. Epub 2016 Jun 21.
10
Reversibility of Covalent, Broad-Spectrum Serine β-Lactamase Inhibition by the Diazabicyclooctenone ETX2514.
ACS Infect Dis. 2017 Nov 10;3(11):833-844. doi: 10.1021/acsinfecdis.7b00113. Epub 2017 Aug 28.

引用本文的文献

3
Sustainable Joullié-Ugi and Continuous Flow Implementation Led to Novel Captopril-Inspired Broad-Spectrum Metallo-β-Lactamase Inhibitors.
J Med Chem. 2025 Aug 28;68(16):17236-17257. doi: 10.1021/acs.jmedchem.5c00750. Epub 2025 Aug 15.
4
Combining MicroED and native mass spectrometry for structural discovery of enzyme-small molecule complexes.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2503780122. doi: 10.1073/pnas.2503780122. Epub 2025 Jul 28.
6
Clinical efficacy, safety and pharmacokinetics of novel β-lactam/β-lactamase inhibitor combinations: a systematic review.
JAC Antimicrob Resist. 2025 Jun 19;7(3):dlaf096. doi: 10.1093/jacamr/dlaf096. eCollection 2025 Jun.
7
Structure and mechanism of taniborbactam inhibition of the cefepime-hydrolyzing, partial R2-loop deletion -derived cephalosporinase variant PDC-88.
Antimicrob Agents Chemother. 2025 Jul 2;69(7):e0007825. doi: 10.1128/aac.00078-25. Epub 2025 Jun 12.
8
Rapid emergence of resistance to broad-spectrum direct antimicrobial activity of avibactam.
Microbiol Spectr. 2025 Jun 12:e0324124. doi: 10.1128/spectrum.03241-24.
9
Quantification of β-Lactamase Inhibition Using a Luminescent Whole-Cell Biosensor.
Methods Mol Biol. 2025;2942:165-175. doi: 10.1007/978-1-0716-4627-4_14.
10
Antifungal agent tavaborole as a potential broad-spectrum serine and metallo-β-lactamases inhibitor.
EBioMedicine. 2025 Jun;116:105754. doi: 10.1016/j.ebiom.2025.105754. Epub 2025 May 13.

本文引用的文献

2
The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety.
Expert Opin Drug Discov. 2010 Apr;5(4):305-10. doi: 10.1517/17460441003677725.
3
Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors.
Curr Opin Microbiol. 2011 Oct;14(5):550-5. doi: 10.1016/j.mib.2011.07.026. Epub 2011 Aug 11.
4
Current trends in β-lactam based β-lactamases inhibitors.
Curr Med Chem. 2011;18(27):4223-36. doi: 10.2174/092986711797189655.
6
The metabolic serine hydrolases and their functions in mammalian physiology and disease.
Chem Rev. 2011 Oct 12;111(10):6022-63. doi: 10.1021/cr200075y. Epub 2011 Jun 23.
7
Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis.
Anal Biochem. 2011 Sep 15;416(2):206-10. doi: 10.1016/j.ab.2011.05.029. Epub 2011 May 27.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验