Department of Electrical Engineering, Columbia University New York, NY, USA.
Front Neural Circuits. 2012 Jun 25;6:25. doi: 10.3389/fncir.2012.00025. eCollection 2012.
Neurons have complex axonal and dendritic morphologies that are the structural building blocks of neural circuits. The traditional method to capture these morphological structures using manual reconstructions is time-consuming and partly subjective, so it appears important to develop automatic or semi-automatic methods to reconstruct neurons. Here we introduce a fast algorithm for tracking neural morphologies in 3D with simultaneous detection of branching processes. The method is based on existing tracking procedures, adding the machine vision technique of multi-scaling. Starting from a seed point, our algorithm tracks axonal or dendritic arbors within a sphere of a variable radius, then moves the sphere center to the point on its surface with the shortest Dijkstra path, detects branching points on the surface of the sphere, scales it until branches are well separated and then continues tracking each branch. We evaluate the performance of our algorithm on preprocessed data stacks obtained by manual reconstructions of neural cells, corrupted with different levels of artificial noise, and unprocessed data sets, achieving 90% precision and 81% recall in branch detection. We also discuss limitations of our method, such as reconstructing highly overlapping neural processes, and suggest possible improvements. Multi-scaling techniques, well suited to detect branching structures, appear a promising strategy for automatic neuronal reconstructions.
神经元具有复杂的轴突和树突形态,这些形态是神经回路的结构基础。传统的使用手动重建来捕捉这些形态结构的方法既耗时又具有一定的主观性,因此开发自动或半自动的神经元重建方法显得尤为重要。在这里,我们引入了一种快速算法,可以在 3D 中同时检测分支过程来跟踪神经形态。该方法基于现有的跟踪程序,增加了多尺度的机器视觉技术。从一个种子点开始,我们的算法在可变半径的球体中跟踪轴突或树突分支,然后将球体中心移动到其表面上最短的 Dijkstra 路径上的点,检测球体表面上的分支点,对其进行缩放,直到分支分开,然后继续跟踪每个分支。我们在通过手动重建神经元细胞获得的预处理数据堆栈上评估了我们算法的性能,这些数据堆栈受到不同水平人工噪声的干扰,以及未处理的数据集,在分支检测方面达到了 90%的精度和 81%的召回率。我们还讨论了我们方法的局限性,例如重建高度重叠的神经过程,并提出了可能的改进方法。多尺度技术非常适合检测分支结构,似乎是自动神经元重建的一种很有前途的策略。