Suppr超能文献

多尺度跟踪的神经形态自动重建。

Automatic reconstruction of neural morphologies with multi-scale tracking.

机构信息

Department of Electrical Engineering, Columbia University New York, NY, USA.

出版信息

Front Neural Circuits. 2012 Jun 25;6:25. doi: 10.3389/fncir.2012.00025. eCollection 2012.

Abstract

Neurons have complex axonal and dendritic morphologies that are the structural building blocks of neural circuits. The traditional method to capture these morphological structures using manual reconstructions is time-consuming and partly subjective, so it appears important to develop automatic or semi-automatic methods to reconstruct neurons. Here we introduce a fast algorithm for tracking neural morphologies in 3D with simultaneous detection of branching processes. The method is based on existing tracking procedures, adding the machine vision technique of multi-scaling. Starting from a seed point, our algorithm tracks axonal or dendritic arbors within a sphere of a variable radius, then moves the sphere center to the point on its surface with the shortest Dijkstra path, detects branching points on the surface of the sphere, scales it until branches are well separated and then continues tracking each branch. We evaluate the performance of our algorithm on preprocessed data stacks obtained by manual reconstructions of neural cells, corrupted with different levels of artificial noise, and unprocessed data sets, achieving 90% precision and 81% recall in branch detection. We also discuss limitations of our method, such as reconstructing highly overlapping neural processes, and suggest possible improvements. Multi-scaling techniques, well suited to detect branching structures, appear a promising strategy for automatic neuronal reconstructions.

摘要

神经元具有复杂的轴突和树突形态,这些形态是神经回路的结构基础。传统的使用手动重建来捕捉这些形态结构的方法既耗时又具有一定的主观性,因此开发自动或半自动的神经元重建方法显得尤为重要。在这里,我们引入了一种快速算法,可以在 3D 中同时检测分支过程来跟踪神经形态。该方法基于现有的跟踪程序,增加了多尺度的机器视觉技术。从一个种子点开始,我们的算法在可变半径的球体中跟踪轴突或树突分支,然后将球体中心移动到其表面上最短的 Dijkstra 路径上的点,检测球体表面上的分支点,对其进行缩放,直到分支分开,然后继续跟踪每个分支。我们在通过手动重建神经元细胞获得的预处理数据堆栈上评估了我们算法的性能,这些数据堆栈受到不同水平人工噪声的干扰,以及未处理的数据集,在分支检测方面达到了 90%的精度和 81%的召回率。我们还讨论了我们方法的局限性,例如重建高度重叠的神经过程,并提出了可能的改进方法。多尺度技术非常适合检测分支结构,似乎是自动神经元重建的一种很有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1358/3385559/ef29b3d2d6fe/fncir-06-00025-g001.jpg

相似文献

1
Automatic reconstruction of neural morphologies with multi-scale tracking.
Front Neural Circuits. 2012 Jun 25;6:25. doi: 10.3389/fncir.2012.00025. eCollection 2012.
3
4
New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks.
Neuroimage. 2004 Dec;23(4):1283-98. doi: 10.1016/j.neuroimage.2004.06.047.
6
Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
J Neurosci Methods. 2016 May 1;264:16-24. doi: 10.1016/j.jneumeth.2016.02.019. Epub 2016 Feb 27.
7
Automated Reconstruction of Neural Trees Using Front Re-initialization.
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8314. doi: 10.1117/12.912237.
10
Functionally relevant measures of spatial complexity in neuronal dendritic arbors.
J Theor Biol. 2006 Feb 7;238(3):505-26. doi: 10.1016/j.jtbi.2005.06.001. Epub 2005 Aug 3.

引用本文的文献

2
Smart imaging to empower brain-wide neuroscience at single-cell levels.
Brain Inform. 2022 May 11;9(1):10. doi: 10.1186/s40708-022-00158-4.
3
Hidden Markov modeling for maximum probability neuron reconstruction.
Commun Biol. 2022 Apr 25;5(1):388. doi: 10.1038/s42003-022-03320-0.
5
6
Graph-Based Models of Cortical Axons for the Prediction of Neuronal Response to Extracellular Electrical Stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1380-1383. doi: 10.1109/EMBC.2018.8512503.
7
DeepNeuron: an open deep learning toolbox for neuron tracing.
Brain Inform. 2018 Jun 6;5(2):3. doi: 10.1186/s40708-018-0081-2.
9
Ensemble Neuron Tracer for 3D Neuron Reconstruction.
Neuroinformatics. 2017 Apr;15(2):185-198. doi: 10.1007/s12021-017-9325-1.
10
Automated Neuron Tracing Methods: An Updated Account.
Neuroinformatics. 2016 Oct;14(4):353-67. doi: 10.1007/s12021-016-9310-0.

本文引用的文献

1
The big and the small: challenges of imaging the brain's circuits.
Science. 2011 Nov 4;334(6056):618-23. doi: 10.1126/science.1209168.
2
3-D image pre-processing algorithms for improved automated tracing of neuronal arbors.
Neuroinformatics. 2011 Sep;9(2-3):219-31. doi: 10.1007/s12021-011-9116-z.
4
A broadly applicable 3-D neuron tracing method based on open-curve snake.
Neuroinformatics. 2011 Sep;9(2-3):193-217. doi: 10.1007/s12021-011-9110-5.
5
A brief history of neuronal reconstruction.
Neuroinformatics. 2011 Sep;9(2-3):119-28. doi: 10.1007/s12021-011-9107-0.
6
Neuronal tracing for connectomic studies.
Neuroinformatics. 2011 Sep;9(2-3):159-66. doi: 10.1007/s12021-011-9101-6.
7
The past, present, and future of single neuron reconstruction.
Neuroinformatics. 2011 Sep;9(2-3):97-8. doi: 10.1007/s12021-011-9097-y.
9
Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations.
Brain Struct Funct. 2011 Mar;216(1):1-15. doi: 10.1007/s00429-010-0291-8. Epub 2010 Dec 3.
10
Automated reconstruction of neuronal morphology: an overview.
Brain Res Rev. 2011 Jun 24;67(1-2):94-102. doi: 10.1016/j.brainresrev.2010.11.003. Epub 2010 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验