Suppr超能文献

深度神经元:一个用于神经元追踪的开源深度学习工具箱。

DeepNeuron: an open deep learning toolbox for neuron tracing.

作者信息

Zhou Zhi, Kuo Hsien-Chi, Peng Hanchuan, Long Fuhui

机构信息

Allen Institute for Brain Science, Seattle, USA.

Southeast University - Allen Institute Joint Center for Neuron Morphology, Southeast University, Nanjing, China.

出版信息

Brain Inform. 2018 Jun 6;5(2):3. doi: 10.1186/s40708-018-0081-2.

Abstract

Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

摘要

重建神经元的三维(3D)形态对于理解大脑结构和功能至关重要。在过去几十年中,已经开发了许多神经元追踪工具,包括手动、半自动和全自动方法,以提取和分析3D神经元结构。然而,它们中的大多数是基于编码特定规则来提取和连接神经元的结构成分而开发的,在复杂的神经元形态上表现有限。最近,深度学习在广泛的图像分析和计算机视觉任务中优于许多其他机器学习方法。在这里,我们开发了一个新的开源工具箱DeepNeuron,它使用深度学习网络从数据中学习特征和规则,并在光学显微镜图像中追踪神经元形态。DeepNeuron提供了一系列模块来解决神经元追踪中基本但具有挑战性的问题。这些问题包括但不限于:(1)在不同图像条件下检测神经元信号,(2)将神经元信号连接成树状结构,(3)修剪和细化树状形态,(4)量化形态质量,以及(5)实时区分树突和轴突。我们使用包括人类和小鼠大脑的明场和共聚焦图像在内的光学显微镜图像对DeepNeuron进行了测试,DeepNeuron在这些图像上展示了神经元追踪的稳健性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c546/5990497/20a0d62153dc/40708_2018_81_Fig5_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验