Suppr超能文献

用于从电话对话内容推断其社交性质的监督式和非监督式特征选择

Supervised and Unsupervised Feature Selection for Inferring Social Nature of Telephone Conversations from Their Content.

作者信息

Stark Anthony, Shafran Izhak, Kaye Jeffrey

机构信息

Biomedical Engineering, OHSU, Portland, USA

出版信息

Proc IEEE Workshop Autom Speech Recognit Underst. 2008 Apr 3;1:378-384. doi: 10.1109/ICCV.2003.1238369. Epub 2003 Oct 13.

Abstract

The ability to reliably infer the nature of telephone conversations opens up a variety of applications, ranging from designing context-sensitive user interfaces on smartphones, to providing new tools for social psychologists and social scientists to study and understand social life of different subpopulations within different contexts. Using a unique corpus of everyday telephone conversations collected from eight residences over the duration of a year, we investigate the utility of popular features, extracted solely from the content, in classifying business-oriented calls from others. Through feature selection experiments, we find that the discrimination can be performed robustly for a majority of the calls using a small set of features. Remarkably, features learned from unsupervised methods, specifically latent Dirichlet allocation, perform almost as well as with as those from supervised methods. The unsupervised clusters learned in this task shows promise of finer grain inference of social nature of telephone conversations.

摘要

可靠推断电话对话性质的能力开启了各种应用,从在智能手机上设计上下文敏感的用户界面,到为社会心理学家和社会科学家提供新工具,以研究和理解不同背景下不同亚群体的社会生活。我们使用从八个住所收集的为期一年的独特日常电话对话语料库,研究仅从内容中提取的流行特征在区分商务电话和其他电话方面的效用。通过特征选择实验,我们发现使用一小部分特征就能对大多数电话进行稳健的区分。值得注意的是,从无监督方法(特别是潜在狄利克雷分配)中学习到的特征,其表现几乎与从监督方法中学习到的特征一样好。在这项任务中学习到的无监督聚类显示出对电话对话社会性质进行更精细推断的前景。

相似文献

1
Supervised and Unsupervised Feature Selection for Inferring Social Nature of Telephone Conversations from Their Content.
Proc IEEE Workshop Autom Speech Recognit Underst. 2008 Apr 3;1:378-384. doi: 10.1109/ICCV.2003.1238369. Epub 2003 Oct 13.
4
INFERRING SOCIAL CONTEXTS FROM AUDIO RECORDINGS USING DEEP NEURAL NETWORKS.
IEEE Int Workshop Mach Learn Signal Process. 2014 Sep;2014. doi: 10.1109/MLSP.2014.6958853. Epub 2014 Nov 20.
8
Unsupervised Adaptive Feature Selection With Binary Hashing.
IEEE Trans Image Process. 2023;32:838-853. doi: 10.1109/TIP.2023.3234497. Epub 2023 Jan 18.
9
Predicting and Grouping Digitized Paintings by Style using Unsupervised Feature Learning.
J Cult Herit. 2018 May-Jun;31:13-23. doi: 10.1016/j.culher.2017.11.008. Epub 2017 Dec 20.
10
ROBUST DETECTION OF VOICED SEGMENTS IN SAMPLES OF EVERYDAY CONVERSATIONS USING UNSUPERVISED HMMS.
SLT Workshop Spok Lang Technol. 2012 Dec;2012:438-442. doi: 10.1109/slt.2012.6424264. Epub 2013 Feb 1.

引用本文的文献

1
A New Remote Health-Care System Based on Moving Robot Intended for the Elderly at Home.
J Healthc Eng. 2018 Feb 7;2018:4949863. doi: 10.1155/2018/4949863. eCollection 2018.
2
Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech.
Comput Speech Lang. 2015 Jan;28(1):186-202. doi: 10.1016/j.csl.2014.01.003.
4
Class-Level Spectral Features for Emotion Recognition.
Speech Commun. 2010 Jul;52(7-8):613-625. doi: 10.1016/j.specom.2010.02.010.

本文引用的文献

1
Eavesdropping on happiness: well-being is related to having less small talk and more substantive conversations.
Psychol Sci. 2010 Apr;21(4):539-41. doi: 10.1177/0956797610362675. Epub 2010 Feb 18.
2
Psychological aspects of natural language. use: our words, our selves.
Annu Rev Psychol. 2003;54:547-77. doi: 10.1146/annurev.psych.54.101601.145041. Epub 2002 Jun 10.
3
Can prosody aid the automatic classification of dialog acts in conversational speech?
Lang Speech. 1998 Jul-Dec;41 ( Pt 3-4):443-92. doi: 10.1177/002383099804100410.
4
Social disengagement and incident cognitive decline in community-dwelling elderly persons.
Ann Intern Med. 1999 Aug 3;131(3):165-73. doi: 10.7326/0003-4819-131-3-199908030-00002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验