Suppr超能文献

你好,谁在打电话?言语能揭示对话的社交本质吗?

Hello, Who is Calling?: Can Words Reveal the Social Nature of Conversations?

作者信息

Stark Anthony, Shafran Izhak, Kaye Jeffrey

出版信息

Proc Conf. 2012:112-119.

Abstract

This study aims to infer the social nature of conversations from their content automatically. To place this work in context, our motivation stems from the need to understand how social disengagement affects cognitive decline or depression among older adults. For this purpose, we collected a comprehensive and naturalistic corpus comprising of all the incoming and outgoing telephone calls from 10 subjects over the duration of a year. As a first step, we learned a binary classifier to filter out business related conversation, achieving an accuracy of about 85%. This classification task provides a convenient tool to probe the nature of telephone conversations. We evaluated the utility of openings and closing in differentiating personal calls, and find that empirical results on a large corpus do not support the hypotheses by Schegloff and Sacks that personal conversations are marked by unique closing structures. For classifying different types of social relationships such as family vs other, we investigated features related to language use (entropy), hand-crafted dictionary (LIWC) and topics learned using unsupervised latent Dirichlet models (LDA). Our results show that the posteriors over topics from LDA provide consistently higher accuracy (60-81%) compared to LIWC or language use features in distinguishing different types of conversations.

摘要

本研究旨在从对话内容中自动推断对话的社交性质。为了将这项工作置于背景中,我们的动机源于需要了解社交脱离如何影响老年人的认知衰退或抑郁。为此,我们收集了一个全面且自然的语料库,其中包括10名受试者在一年时间内所有的来电和去电。作为第一步,我们学习了一个二元分类器来过滤掉与业务相关的对话,准确率约为85%。这个分类任务为探究电话对话的性质提供了一个便利的工具。我们评估了开场白和结束语在区分个人通话方面的效用,并发现基于大量语料库的实证结果并不支持谢格洛夫和萨克斯提出的假设,即个人对话以独特的结束语结构为特征。为了对不同类型的社会关系(如家庭关系与其他关系)进行分类,我们研究了与语言使用(熵)、手工制作的词典(LIWC)以及使用无监督潜在狄利克雷模型(LDA)学习的主题相关的特征。我们的结果表明,与LIWC或语言使用特征相比,LDA主题的后验概率在区分不同类型对话时始终提供更高的准确率(60 - 81%)。

相似文献

3
Supervised and Unsupervised Feature Selection for Inferring Social Nature of Telephone Conversations from Their Content.
Proc IEEE Workshop Autom Speech Recognit Underst. 2008 Apr 3;1:378-384. doi: 10.1109/ICCV.2003.1238369. Epub 2003 Oct 13.
4
Using topic modeling to infer the emotional state of people living with Parkinson's disease.
Assist Technol. 2021 May 4;33(3):136-145. doi: 10.1080/10400435.2019.1623342. Epub 2019 Jun 13.
8
Exploiting Language Models to Classify Events from Twitter.
Comput Intell Neurosci. 2015;2015:401024. doi: 10.1155/2015/401024. Epub 2015 Sep 14.
9
Exploring the association between problem drinking and language use on Facebook in young adults.
Heliyon. 2019 Oct 9;5(10):e02523. doi: 10.1016/j.heliyon.2019.e02523. eCollection 2019 Oct.
10
Local-LDA: Open-Ended Learning of Latent Topics for 3D Object Recognition.
IEEE Trans Pattern Anal Mach Intell. 2020 Oct;42(10):2567-2580. doi: 10.1109/TPAMI.2019.2926459. Epub 2019 Jul 2.

引用本文的文献

1
COVID-19: Detecting depression signals during stay-at-home period.
Health Informatics J. 2022 Apr-Jun;28(2):14604582221094931. doi: 10.1177/14604582221094931.
3
Tools for advancing research into social networks and cognitive function in older adults.
Int Psychogeriatr. 2014 Apr;26(4):533-9. doi: 10.1017/S1041610213001750. Epub 2013 Oct 23.

本文引用的文献

1
Supervised and Unsupervised Feature Selection for Inferring Social Nature of Telephone Conversations from Their Content.
Proc IEEE Workshop Autom Speech Recognit Underst. 2008 Apr 3;1:378-384. doi: 10.1109/ICCV.2003.1238369. Epub 2003 Oct 13.
2
Psychological aspects of natural language. use: our words, our selves.
Annu Rev Psychol. 2003;54:547-77. doi: 10.1146/annurev.psych.54.101601.145041. Epub 2002 Jun 10.
3
Beyond single indicators of social networks: a LISREL analysis of social ties among the elderly.
Soc Sci Med. 1997 May;44(10):1503-17. doi: 10.1016/s0277-9536(96)00270-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验