Stark Anthony, Shafran Izhak, Kaye Jeffrey
Proc Conf. 2012:112-119.
This study aims to infer the social nature of conversations from their content automatically. To place this work in context, our motivation stems from the need to understand how social disengagement affects cognitive decline or depression among older adults. For this purpose, we collected a comprehensive and naturalistic corpus comprising of all the incoming and outgoing telephone calls from 10 subjects over the duration of a year. As a first step, we learned a binary classifier to filter out business related conversation, achieving an accuracy of about 85%. This classification task provides a convenient tool to probe the nature of telephone conversations. We evaluated the utility of openings and closing in differentiating personal calls, and find that empirical results on a large corpus do not support the hypotheses by Schegloff and Sacks that personal conversations are marked by unique closing structures. For classifying different types of social relationships such as family vs other, we investigated features related to language use (entropy), hand-crafted dictionary (LIWC) and topics learned using unsupervised latent Dirichlet models (LDA). Our results show that the posteriors over topics from LDA provide consistently higher accuracy (60-81%) compared to LIWC or language use features in distinguishing different types of conversations.
本研究旨在从对话内容中自动推断对话的社交性质。为了将这项工作置于背景中,我们的动机源于需要了解社交脱离如何影响老年人的认知衰退或抑郁。为此,我们收集了一个全面且自然的语料库,其中包括10名受试者在一年时间内所有的来电和去电。作为第一步,我们学习了一个二元分类器来过滤掉与业务相关的对话,准确率约为85%。这个分类任务为探究电话对话的性质提供了一个便利的工具。我们评估了开场白和结束语在区分个人通话方面的效用,并发现基于大量语料库的实证结果并不支持谢格洛夫和萨克斯提出的假设,即个人对话以独特的结束语结构为特征。为了对不同类型的社会关系(如家庭关系与其他关系)进行分类,我们研究了与语言使用(熵)、手工制作的词典(LIWC)以及使用无监督潜在狄利克雷模型(LDA)学习的主题相关的特征。我们的结果表明,与LIWC或语言使用特征相比,LDA主题的后验概率在区分不同类型对话时始终提供更高的准确率(60 - 81%)。