ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
J Chem Phys. 2012 Jun 28;136(24):244108. doi: 10.1063/1.4729788.
We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation--called local approximation to the unitary decoupling transformation (DLU)--provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N(2) scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian--denoted diagonal local approximation to the Hamiltonian (DLH) in this paper--introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations for which ultimate accuracy is not the major concern.
我们提出了一种基于狄拉克方程的四分量量子化学哈密顿量局部精确解耦的近似方法的系统层次结构。我们的方法超越了基于哈密顿量原子块对角部分的幺正变换的简单局部近似。系统地,可以对非对角部分的哈密顿量矩阵块进行幺正变换,以得到相对论修正的矩阵元。我们对完整的层次结构进行了研究,以确定在电子能量和平衡测试分子集上的选定分子性质方面达到的精度,该分子集包括处于不同键合状态的重元素分子。我们的原子(局部)组装的幺正精确解耦变换——称为幺正解耦变换的局部近似(DLU)——为任何相对论精确解耦方法提供了极好的局部近似。通过采用相邻原子块近似,其阶数为 N^2 的标度可以进一步降低到线性标度。因此,DLU 是一种高效的相对论方法,非常适合于大分子的相对论计算。如果一个大分子包含许多轻原子(通常是氢原子),则可以通过对这些轻原子采用明确定义的非相对论近似,而不会显著降低精度,从而进一步降低计算成本。我们还证明,仅对哈密顿量的原子块对角项进行标准和直接的变换——本文中称为哈密顿量的对角局部近似(DLH)——引入的误差与精确解耦结果相比,处于二阶 Douglas-Kroll-Hess(即 DKH2)误差的量级。因此,在精确解耦框架中,局部 DLH 近似是毫无意义的,但可以有效地与快速评估 DKH2 哈密顿量结合使用,以加速计算,其中最终精度不是主要关注点。