Bruder Florian, Weigend Florian, Franzke Yannick J
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
J Phys Chem A. 2024 Aug 29;128(34):7298-7310. doi: 10.1021/acs.jpca.4c03794. Epub 2024 Aug 20.
The electron-nucleus hyperfine coupling constant is a challenging property for density functional methods. For accurate results, hybrid functionals with a large amount of exact exchange are often needed and there is no clear "one-for-all" functional which describes the hyperfine coupling interaction for a large set of nuclei. To alleviate this unfavorable situation, we apply the adiabatic connection random phase approximation (RPA) in its post-Kohn-Sham fashion to this property as a first test. For simplicity, only the Fermi-contact and spin-dipole terms are calculated within the nonrelativistic and the scalar-relativistic exact two-component framework. This requires to solve a single coupled-perturbed Kohn-Sham equation to evaluate the relaxed density matrix, which comes with a modest increase in computational demands. RPA performs remarkably well and substantially improves upon its Kohn-Sham (KS) starting point while also reducing the dependence on the KS reference. For main-group systems, RPA outperforms global, range-separated, and local hybrid functionals─at similar computational costs. For transition-metal compounds and lanthanide complexes, a similar performance as for hybrid functionals is observed. In contrast, related post-Hartree-Fock methods such as Møller-Plesset perturbation theory or CC2 perform worse than semilocal density functionals.
电子-原子核超精细耦合常数对于密度泛函方法来说是一个具有挑战性的性质。为了获得准确的结果,通常需要使用大量精确交换项的杂化泛函,而且没有一种明确的“通用”泛函能够描述大量原子核的超精细耦合相互作用。为了缓解这种不利情况,我们将绝热连接随机相位近似(RPA)以其自后科恩-沈(Kohn-Sham)的方式应用于此性质作为首次测试。为简单起见,仅在非相对论和标量相对论精确二分量框架内计算费米接触项和自旋偶极项。这需要求解一个单一的耦合微扰科恩-沈方程来评估弛豫密度矩阵,计算量会适度增加。RPA表现出色,在其科恩-沈(KS)起点的基础上有显著改进,同时也降低了对KS参考的依赖。对于主族体系,在相似的计算成本下,RPA优于全局、范围分离和局域杂化泛函。对于过渡金属化合物和镧系配合物,观察到其表现与杂化泛函类似。相比之下,相关的后哈特里-福克方法,如莫勒-普莱塞特微扰理论或CC2,表现比半局域密度泛函更差。