Suppr超能文献

逆向优化 3D 适形计划:在多个临床部位实现与射束角调强放射治疗等效的同时,最小化复杂性。

Inverse-optimized 3D conformal planning: minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites.

机构信息

Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

出版信息

Med Phys. 2012 Jun;39(6):3361-74. doi: 10.1118/1.4709604.

Abstract

PURPOSE

Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1-2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites).

METHODS

The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans.

RESULTS

IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%-68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%-84% than the 0.5 cm × 0.5 cm beamlet IMRT plans.

CONCLUSIONS

The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients.

摘要

目的

反向计划强度调制放射治疗(IMRT)已帮助许多中心利用基于射束的技术实现高度适形治疗计划。然而,由于大多数 3DCRT 计划是正向计划的,而 IMRT 计划则利用反向计划,因此大多数 3DCRT 计划与 IMRT 计划之间的比较受到限制,这意味着优化和交付技术是不同的。这项工作通过比较称为反向优化的 3D(IO-3D)适形规划的独特反向计划方法生成的 3D 计划来避免该问题。由于 IO-3D 和与之比较的射束 IMRT 使用相同的优化技术、成本函数和计划评估工具,因此可以直接比较 IMRT 和简单的、优化的 IO-3D 计划。尽管 IO-3D 与直接孔径优化(DAO)有些相似,因为它直接优化所使用的孔径,但 IO-3D 专门针对 3DCRT 场(即每个射束 1-2 个孔径)而设计,而不是从 IMRT 样的调制开始,然后优化孔径形状。这两个算法在设计、实现和使用上有很大的不同。这项工作的目标包括使用 IO-3D 来评估简单但优化的 IO-3D 计划如何接近无约束的射束 IMRT,表明优化而不是调制可能是某些站点的 IMRT 最重要的方面。

方法

IO-3D 剂量计算和优化功能集成在内部 3D 规划/优化系统中。新功能包括随机点剂量计算分布、costlet 和成本函数功能、快速剂量体积直方图(DVH)和计划评估工具、专为 IO-3D 设计的优化搜索策略以及改进的、重新实现的边缘/八叉树计算算法。与 DAO 不同,IO-3D 旨在优化 3D 适形计划(每个射束一个到两个段),并使用各种用户可控的搜索策略优化 MLC 段形状和权重,这些搜索策略优化计划而无需射束或铅笔束近似。IO-3D 允许使用相同的成本函数、剂量点和计划评估指标比较射束、多段和适形计划,因此可以直接进行定量比较。在这里,比较了 IO-3D 和射束 IMRT 技术在乳房、大脑、肝脏和肺部计划中的应用。

结果

IO-3D 为许多情况实现了与射束 IMRT 相当的高质量结果。尽管 IO-3D 计划的优化自由度要少得多,但这项工作发现,对于一些站点,每个射束只有一个到两个段的 IO-3D 计划在剂量学上与射束 IMRT 计划等效(或几乎等效)。IO-3D 还大大降低了计划的复杂性。在这里,IO-3D 计划的每分 MU/Fx 比 1cm×1cm 射束 IMRT 计划少 22%-68%,比 0.5cm×0.5cm 射束 IMRT 计划少 72%-84%。

结论

独特的 IO-3D 算法表明,反向计划可以为许多站点实现与无约束射束 IMRT 计划等效(或几乎等效)的高质量 3D 适形计划。因此,IO-3D 有可能优化平板或少数段的 3DCRT 计划,创建更简单、更高效的优化计划,易于交付。对于包括自适应重新规划、分次内和分次间运动以及儿科患者在内的情况,更简单的 IO-3D 计划具有操作优势。

相似文献

2
Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation.
Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1248-58. doi: 10.1016/j.ijrobp.2006.11.036. Epub 2007 Feb 1.
3
Beamlet based direct aperture optimization for MERT using a photon MLC.
Med Phys. 2014 Dec;41(12):121711. doi: 10.1118/1.4901638.
4
Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
Int J Radiat Oncol Biol Phys. 2006 Jan 1;64(1):301-20. doi: 10.1016/j.ijrobp.2005.08.023. Epub 2005 Nov 14.
6
Effect of beamlet step-size on IMRT plan quality.
Med Phys. 2005 Nov;32(11):3448-54. doi: 10.1118/1.2098107.
7
Intensity modulated neutron radiotherapy optimization by photon proxy.
Med Phys. 2012 Aug;39(8):4992-8. doi: 10.1118/1.4737024.
8
Direct aperture optimization for IMRT using Monte Carlo generated beamlets.
Med Phys. 2006 Oct;33(10):3666-79. doi: 10.1118/1.2336509.
9
Inverse-planned deliverable 4D-IMRT for lung SBRT.
Med Phys. 2018 Nov;45(11):5145-5160. doi: 10.1002/mp.13157. Epub 2018 Oct 1.
10
Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments.
Phys Med Biol. 2008 Dec 7;53(23):6653-72. doi: 10.1088/0031-9155/53/23/002. Epub 2008 Nov 7.

引用本文的文献

2
A novel inverse optimization based three-dimensional conformal radiotherapy technique in craniospinal irradiation.
Phys Eng Sci Med. 2021 Mar;44(1):265-275. doi: 10.1007/s13246-021-00976-6. Epub 2021 Feb 8.
3
Inverse 4D conformal planning for lung SBRT using particle swarm optimization.
Phys Med Biol. 2016 Aug 21;61(16):6181-202. doi: 10.1088/0031-9155/61/16/6181. Epub 2016 Aug 1.
4
Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization.
IEEE Trans Biomed Eng. 2017 May;64(5):980-989. doi: 10.1109/TBME.2016.2585114. Epub 2016 Jun 27.

本文引用的文献

1
Safety considerations for IMRT: Executive summary.
Pract Radiat Oncol. 2011 Jul-Sep;1(3):190-5. doi: 10.1016/j.prro.2011.04.008. Epub 2011 Jul 8.
2
Commentary: Safety considerations in contemporary radiation oncology: Introduction to a series of ASTRO safety white papers.
Pract Radiat Oncol. 2011 Jul-Sep;1(3):188-9. doi: 10.1016/j.prro.2011.04.009. Epub 2011 Jul 8.
3
5
Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation.
Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1248-58. doi: 10.1016/j.ijrobp.2006.11.036. Epub 2007 Feb 1.
6
Intensity-modulated radiotherapy of breast cancer using direct aperture optimization.
Radiother Oncol. 2006 May;79(2):162-9. doi: 10.1016/j.radonc.2006.04.010. Epub 2006 May 18.
7
An examination of the number of required apertures for step-and-shoot IMRT.
Phys Med Biol. 2005 Dec 7;50(23):5653-63. doi: 10.1088/0031-9155/50/23/017. Epub 2005 Nov 23.
8
Improving IMRT delivery efficiency using intensity limits during inverse planning.
Med Phys. 2005 May;32(5):1234-45. doi: 10.1118/1.1895545.
9
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Med Phys. 2002 Jun;29(6):1007-18. doi: 10.1118/1.1477415.
10
Leaf position optimization for step-and-shoot IMRT.
Int J Radiat Oncol Biol Phys. 2001 Dec 1;51(5):1371-88. doi: 10.1016/s0360-3016(01)02607-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验