Suppr超能文献

基于粒子群优化中改进搜索策略的放射治疗计划

Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization.

作者信息

Modiri Arezoo, Gu Xuejun, Hagan Aaron M, Sawant Amit

出版信息

IEEE Trans Biomed Eng. 2017 May;64(5):980-989. doi: 10.1109/TBME.2016.2585114. Epub 2016 Jun 27.

Abstract

OBJECTIVE

Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach.

METHODS

We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm-a popular RT optimization technique is also implemented and used.

RESULTS

The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations.

CONCLUSION

The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO.

SIGNIFICANCE

RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.

摘要

目的

进化随机全局优化算法广泛应用于大规模非凸问题。然而,提高这些技术的搜索效率和可重复性通常需要精心定制的方法。本研究探讨了一种这样的方法。

方法

我们使用粒子群优化(PSO)算法来解决一个四维放射治疗(RT)逆向计划问题,其关键思想是将呼吸运动作为肺癌放疗中的一个额外自由度。主要目标是在保护周围健康组织的同时,对肿瘤靶区给予致死剂量。我们的优化迭代地调整所有呼吸阶段所有射束孔径的辐射注量权重。我们实现了三种基于PSO的方法:传统使用的无约束、硬约束和我们提出的虚拟搜索。作为概念验证,使用每种PSO方法对五个肺癌患者病例进行了十次运行的优化。为了进行比较,还实现并使用了一种动态惩罚似然(DPL)算法——一种流行的放疗优化技术。

结果

所提出的技术显著提高了对随机初始化的鲁棒性,同时在所有病例中收敛所需的迭代周期更少。DPL在5个放疗病例中的2个中通过显著更多的迭代设法找到了全局最优解。

结论

所提出的虚拟搜索方法提高了群体搜索效率,从而提高了PSO的优化收敛速度和鲁棒性。

意义

放疗计划是一个大规模非凸优化问题,在临床实际时间内找到最优解至关重要。我们提出的方法可能会提高类似时间敏感问题中的优化效率。

相似文献

2
Inverse-planned deliverable 4D-IMRT for lung SBRT.用于肺部 SBRT 的逆计划可交付 4D-IMRT。
Med Phys. 2018 Nov;45(11):5145-5160. doi: 10.1002/mp.13157. Epub 2018 Oct 1.

本文引用的文献

7
Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge.胸部 CT 配准方法评估:EMPIRE10 挑战赛。
IEEE Trans Med Imaging. 2011 Nov;30(11):1901-20. doi: 10.1109/TMI.2011.2158349. Epub 2011 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验