Modiri Arezoo, Gu Xuejun, Hagan Aaron M, Sawant Amit
IEEE Trans Biomed Eng. 2017 May;64(5):980-989. doi: 10.1109/TBME.2016.2585114. Epub 2016 Jun 27.
Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach.
We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm-a popular RT optimization technique is also implemented and used.
The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations.
The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO.
RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.
进化随机全局优化算法广泛应用于大规模非凸问题。然而,提高这些技术的搜索效率和可重复性通常需要精心定制的方法。本研究探讨了一种这样的方法。
我们使用粒子群优化(PSO)算法来解决一个四维放射治疗(RT)逆向计划问题,其关键思想是将呼吸运动作为肺癌放疗中的一个额外自由度。主要目标是在保护周围健康组织的同时,对肿瘤靶区给予致死剂量。我们的优化迭代地调整所有呼吸阶段所有射束孔径的辐射注量权重。我们实现了三种基于PSO的方法:传统使用的无约束、硬约束和我们提出的虚拟搜索。作为概念验证,使用每种PSO方法对五个肺癌患者病例进行了十次运行的优化。为了进行比较,还实现并使用了一种动态惩罚似然(DPL)算法——一种流行的放疗优化技术。
所提出的技术显著提高了对随机初始化的鲁棒性,同时在所有病例中收敛所需的迭代周期更少。DPL在5个放疗病例中的2个中通过显著更多的迭代设法找到了全局最优解。
所提出的虚拟搜索方法提高了群体搜索效率,从而提高了PSO的优化收敛速度和鲁棒性。
放疗计划是一个大规模非凸优化问题,在临床实际时间内找到最优解至关重要。我们提出的方法可能会提高类似时间敏感问题中的优化效率。