Suppr超能文献

兴奋性 Erdős-Renyi 神经网络中的相干周期活动:网络连接的作用。

Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

机构信息

CNR-Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.

出版信息

Chaos. 2012 Jun;22(2):023133. doi: 10.1063/1.4723839.

Abstract

In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully connected network for any γ-value. Apart for the peculiar exception of sparse networks, which remain intrinsically inhomogeneous at any system size.

摘要

在本文中,我们研究了连接性在促进兴奋性神经网络相干活动中的作用。特别是,我们希望了解集体振荡的起始是否可以与最小平均连接相关,以及这种关键连接如何取决于网络中的神经元数量。为此,我们考虑了一个具有漏电积分和放电脉冲耦合神经元的兴奋性随机网络。神经元以有向 Erdös-Renyi 图的方式连接,平均连接度按网络中神经元数量的幂律缩放。标度由参数γ控制,γ允许从大规模连接到稀疏网络,从而改变系统的拓扑结构。在宏观水平上,我们观察到两个不同的动力学相:一个异步状态对应于神经元的去同步动力学,一个部分同步(PS)状态与网络的相干周期性活动相关联。在低连接度下,系统处于异步状态,而 PS 出现在一定的平均连接度(c)之上。对于足够大的网络,(c)饱和到一个常数值,表明无论考虑的网络是稀疏的还是大规模连接的,观察到任何大小的系统中的相干活动都需要最小的平均连接。然而,这个值取决于突触的性质:可靠或不可靠。对于不可靠的突触,观察到宏观行为的起始所需的临界值明显小于可靠突触传递的情况。由于系统中存在的无序,对于有限数量的神经元,我们在神经元行为中存在不均匀性,导致弱混沌,这种混沌在热力学极限下消失。在这样的极限下,无序系统表现出规则(非混沌)的动力学,它们的性质对应于任何γ值的全连接同质网络的性质。除了稀疏网络的特殊例外情况外,这些网络在任何系统规模下仍然具有内在的不均匀性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验