Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, Brazil.
Chaos. 2012 Jun;22(2):026112. doi: 10.1063/1.3697985.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chaotic stripes as the nonlinear parameter is increased. The stripes represent intervals of initial conditions which generate chaotic trajectories and increase with the nonlinear parameter of the system. In the billiard case, the initial conditions are the injection angles. For higher-dimensional systems and small nonlinearities, the chaotic stripes are the initial condition inside which Arnold diffusion occurs.
弱混沌哈密顿系统的动力学强烈依赖于初始条件(ICs),对于一般行为几乎无法确定。我们使用两个不同的哈密顿系统,即一个在开放矩形弹丸中的粒子和四个在离散晶格上全局耦合的粒子,表明在这些模型中,随着非线性参数的增加,从可积运动到弱混沌的转变是通过混沌条纹出现的。条纹代表了产生混沌轨迹的初始条件区间,并随着系统的非线性参数而增加。在弹丸情况下,初始条件是注入角度。对于高维系统和小的非线性,混沌条纹是发生阿诺德扩散的初始条件内部。