Suppr超能文献

开放可积台球中的内在粘性和混沌:微小的边界效应。

Intrinsic stickiness and chaos in open integrable billiards: tiny border effects.

作者信息

Custódio M S, Beims M W

机构信息

Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056201. doi: 10.1103/PhysRevE.83.056201. Epub 2011 May 2.

Abstract

Rounding border effects at the escape point of open integrable billiards are analyzed via the escape-time statistics and emission angles. The model is the rectangular billiard and the shape of the escape point is assumed to have a semicircular form. Stickiness, chaos, and self-similar structures for the escape times and emission angles are generated inside "backgammon" like stripes of initial conditions. These stripes are born at the boundary between two different emission angles but with the same escape times and when rounding effects increase they start to overlap generating a very rich dynamics. Tiny rounded borders (around 0.1% from the whole billiard size) are shown to be sufficient to generate the sticky motion with power-law decay γ(esc)=1.27, while borders larger than 10% are enough to produce escape times related to the chaotic motion. Escape exponents in the interval 1<γ(esc)<2 are generated due to marginal unstable periodic orbits trapping alternately (in time) regular and chaotic trajectories.

摘要

通过逃逸时间统计和发射角来分析开放可积台球逃逸点处的圆形边界效应。模型为矩形台球,且假设逃逸点的形状为半圆形。在类似“西洋双陆棋”的初始条件条纹内部,会产生逃逸时间和发射角的粘性、混沌及自相似结构。这些条纹产生于两个不同发射角但逃逸时间相同的边界处,当圆形效应增强时,它们开始重叠,从而产生非常丰富的动力学。微小的圆形边界(约为整个台球尺寸的0.1%)足以产生具有幂律衰减γ(esc)=1.27的粘性运动,而大于10%的边界则足以产生与混沌运动相关的逃逸时间。由于边缘不稳定周期轨道交替(在时间上)捕获规则和混沌轨迹,从而产生了1<γ(esc)<2区间内的逃逸指数。

相似文献

1
Intrinsic stickiness and chaos in open integrable billiards: tiny border effects.开放可积台球中的内在粘性和混沌:微小的边界效应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056201. doi: 10.1103/PhysRevE.83.056201. Epub 2011 May 2.
2
Leaking billiards.渗漏的台球。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046204. doi: 10.1103/PhysRevE.75.046204. Epub 2007 Apr 10.
4
Stickiness in mushroom billiards.蘑菇台球中的粘性。
Chaos. 2005 Sep;15(3):33105. doi: 10.1063/1.1979211.
5
Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space.哈密顿系统中的粘性:从急剧分裂到分层相空间
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026207. doi: 10.1103/PhysRevE.73.026207. Epub 2006 Feb 10.
6
Crossover from regular to irregular behavior in current flow through open billiards.通过开放台球的电流从规则行为到不规则行为的转变。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016218. doi: 10.1103/PhysRevE.66.016218. Epub 2002 Jul 26.
10
Escape time statistics for mushroom billiards.蘑菇台球的逃逸时间统计
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066215. doi: 10.1103/PhysRevE.75.066215. Epub 2007 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验