Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.
Ann N Y Acad Sci. 2012 Jul;1259:10-8. doi: 10.1111/j.1749-6632.2012.06582.x.
The understanding of the unorthodox actions of neuronal-derived nitric oxide ((•)NO) in the brain has been constrained by uncertainties regarding its quantitative profile of change in time and space. As a diffusible intercellular messenger, conveying information associated with its concentration dynamics, both the synthesis via glutamate stimulus and inactivation pathways determine the profile of (•)NO concentration change. In vivo studies, encompassing the real-time measurement of (•)NO concentration dynamics have allowed us to gain quantitative insights into the mechanisms inherent to (•)NO-mediated signaling pathways. It has been of particular interest to study the diffusion properties and half-life, the interplay between (•)NO and O(2) and the ensuing functional consequences for regulation of O(2) consumption, the role of vasculature in shaping (•)NO signals in vivo, and the mechanisms that are responsible for (•)NO to achieve the coupling between glutamatergic neuronal activation and local microcirculation.
神经元衍生的一氧化氮((•)NO)在大脑中的非常规作用的理解受到其在时间和空间上的定量变化情况的不确定性的限制。作为一种可扩散的细胞间信使,传递与其浓度动态相关的信息,(•)NO 的合成通过谷氨酸刺激和失活途径决定了 (•)NO 浓度变化的情况。体内研究包括对 (•)NO 浓度动态的实时测量,使我们能够深入了解内在的机制 (•)NO 介导的信号通路。特别有趣的是研究扩散特性和半衰期、(•)NO 和 O(2) 之间的相互作用以及对 O(2) 消耗的调节的功能后果、脉管系统在体内塑造 (•)NO 信号的作用,以及负责 (•)NO 实现谷氨酸能神经元激活和局部微循环之间耦合的机制。