Laboratory of Molecular Epidemiology and Bioinformatics, Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S6. doi: 10.1186/1471-2105-13-S10-S6.
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing.
In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones.
Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
下一代测序技术允许分析来自感染患者的前所未有的大量病毒序列变体,为了解病毒进化、耐药性和免疫逃逸提供了新的机会。然而,批量测序容易出错。因此,生成的数据需要进行错误识别和纠正。迄今为止,大多数纠错方法都不是针对扩增子分析进行优化的,并且假设错误率是随机分布的。最近对使用 454 测序获得的扩增子序列的质量评估表明,错误率与同源聚合物的存在和大小、序列中的位置以及扩增子的长度密切相关。所有这些参数都与序列密切相关,应该包含在为扩增子测序设计的纠错算法的校准中。
在本文中,我们提出了两种针对病毒扩增子的新的高效纠错算法:(i)基于 k-mer 的纠错(KEC)和(ii)经验频率阈值(ET)。为了评估它们在通过 454 测序获得的已知序列的扩增子的 24 个实验数据集上的相对性能,将这两种算法与之前发表的聚类算法(SHORAH)进行了比较。所有三种算法在找到真实单倍型方面都具有相似的准确性。然而,KEC 和 ET 在去除假单倍型和估计真实单倍型的频率方面明显比 SHORAH 更有效。
KEC 和 ET 这两种算法都非常适合从异源病毒的 454 测序扩增子中快速恢复无错误的单倍型。用于测试这些算法的数据集的实现可在以下网址获得:http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm。