Institute for Integrated Cell-Material Sciences, Kyoto University, Funai Center #201, Nishikyo-ku, Kyoto, Japan.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15600-5. doi: 10.1073/pnas.1120705109. Epub 2012 Jul 3.
The nature of chemical bonds of ruthenium(Ru)-quinine(Q) complexes, mononuclear Ru(trpy)(3,5-t-Bu(2)Q)(OH(2))(2) (trpy = 2,2':6',2''-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear Ru(2)(btpyan)(3,6-di-Bu(2)Q)(2)(OH(2)) (btpyan = 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene, 3,6-t-Bu(2)Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)-Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems.
钌(Ru)-金鸡纳碱(Q)配合物的化学键本质,单核Ru(trpy)(3,5-t-Bu(2)Q)(OH(2))(2)(trpy = 2,2':6',2''-三联吡啶,3,5-二叔丁基-1,2-苯醌)(1)和双核Ru(2)(btpyan)(3,6-di-Bu(2)Q)(2)(OH(2))(btpyan = 1,8-双(2,2':6',2''-三联吡啶-4'-基)蒽,3,6-t-Bu(2)Q = 3,6-二叔丁基-1,2-苯醌)(2),已通过非对称杂交密度泛函(DFT)方法进行了研究。对于 Ru 配合物的非对称 DFT 计算表明,闭壳层结构(2b)Ru(II)-Q 配合物不如由 Ru(III)和半醌(SQ)自由基片段组成的开壳层结构(2bb)稳定。这些计算还阐明了在水分解反应过程中可能产生的 8 种不同的电子和自旋结构的四自由基中间体。已经为这些物种推导了海森堡自旋哈密顿模型,以阐明四个自旋系统的 6 种不同有效交换相互作用(J)。对于不同自旋构型的 8 种(或 7 种)BS 解,使用 6 个 J 值确定了 6 个 J 值。还对这些 BS DFT 解进行了自然轨道分析,以获得自然轨道及其占据数,这对于清楚地理解 Ru 配合物的化学键本质非常有用。计算结果的含义与人工光合作用系统中水分解反应的提出的反应机制以及人工和天然水分解系统之间的相似性有关。