Isobe Hiroshi, Tanaka Koji, Shen Jian-Ren, Yamaguchi Kizashi
Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University , Okayama 700-8530, Japan.
Inorg Chem. 2014 Apr 21;53(8):3973-84. doi: 10.1021/ic402340d. Epub 2014 Apr 2.
We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, Ru2(X)(Y)(3,6-tBu2Q)2(btpyan) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.
我们从理论上研究了含氧化还原活性醌配体的双核钌配合物Ru2(X)(Y)(3,6-tBu2Q)2(btpyan) [X、Y = H2O、OH、O、O2;3,6-tBu2Q = 3,6-二叔丁基-1,2-苯醌;btpyan = 1,8-双(2,2':6',2″-三联吡啶-4'-基)蒽] (m = 2、3、4) (1) 在水溶液中电化学水氧化的催化机制。该反应涉及一系列电子和质子转移以实现氧化还原平衡,其间有化学转化以网状模式进行,并且催化剂1的整个分子结构和运动共同驱动水氧化的催化循环。两个底物水分子可以与1结合,同时失去一个或两个质子,这使得底物结合结构的比例以及随后水合/羟基配体氧化活化途径在低热力学和动力学成本下呈现pH依赖性变化。生成的双氧中间体然后在反式共面构象的两个Ru(III)-O(•)单元之间进行吸热的O-O自由基偶联,导致桥连的μ-过氧或μ-超氧中间体。μ-超氧物种只有在完成四电子氧化后才有可能结合一个水分子,之后才能释放氧气。催化电流的大小将受到桥连μ-超氧配合物类似铰链的弯曲运动固有迟缓性的限制,这种运动打开了催化剂紧凑的疏水活性位点,从而在动态条件下允许水进入。基于新提出的机制,我们对电极动力学关于电位的实验观察行为进行了合理化解释,并讨论了1导致水氧化高过电位的原因。