Suppr超能文献

复杂声音的听觉脑干反应可预测自我报告的噪声环境下言语感知能力。

Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.

机构信息

Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA.

出版信息

J Speech Lang Hear Res. 2013 Feb;56(1):31-43. doi: 10.1044/1092-4388(2012/12-0043). Epub 2012 Jul 3.

Abstract

PURPOSE

To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds.

METHOD

Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR.

RESULTS

Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included.

CONCLUSION

The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.

摘要

目的

比较复杂声音听觉脑干反应(cABR)预测言语理解能力的能力,以言语、空间和听觉质量量表(SSQ;Gatehouse 和 Noble,2004)的噪声主观评分与 Quick Speech-in-Noise 测试(QuickSIN;Killion 等人,2004 年)和纯音听力阈值的预测能力。

方法

参与者包括 111 名中老年成年人(范围= 45-78 岁),听力配置从正常听力水平到中度感音神经性听力损失不等。除了使用听力测试外,作者还使用了 QuickSIN、SSQ 和 cABR 等评估措施。

结果

多元线性回归分析表明,在包含 QuickSIN、听力阈值和年龄的模型中加入脑干变量,可以解释 SSQ 言语分量表 30%的方差,而不包括脑干变量时则解释的方差明显较少(19%)。

结论

作者的结果表明 cABR 对预测自我报告的噪声下言语感知困难具有有效性。cABR 预测自我报告的噪声下言语感知(SIN)的方差比 QuickSIN 或听力阈值更多,这表明 cABR 提供了对个体在背景噪声中听力能力的额外了解。此外,研究结果强调了 cABR 与噪声听力之间的联系。

相似文献

1
Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.
J Speech Lang Hear Res. 2013 Feb;56(1):31-43. doi: 10.1044/1092-4388(2012/12-0043). Epub 2012 Jul 3.
2
Speech-in-Noise Assessment in the Routine Audiologic Test Battery: Relationship to Perceived Auditory Disability.
Ear Hear. 2024;45(4):816-826. doi: 10.1097/AUD.0000000000001472. Epub 2024 Feb 28.
5
Sensory-cognitive interaction in the neural encoding of speech in noise: a review.
J Am Acad Audiol. 2010 Oct;21(9):575-85. doi: 10.3766/jaaa.21.9.3.
9
Understanding excessive SNR loss in hearing-impaired listeners.
J Am Acad Audiol. 2013 Apr;24(4):258-73; quiz 337-8. doi: 10.3766/jaaa.24.4.3.
10
A neural basis of speech-in-noise perception in older adults.
Ear Hear. 2011 Nov-Dec;32(6):750-7. doi: 10.1097/AUD.0b013e31822229d3.

引用本文的文献

3
Objectively Measuring Audiovisual Effects in Noise Using Virtual Human Speakers.
Trends Hear. 2025 Jan-Dec;29:23312165251333528. doi: 10.1177/23312165251333528. Epub 2025 Apr 13.
6
Classifying coherent versus nonsense speech perception from EEG using linguistic speech features.
Sci Rep. 2024 Aug 14;14(1):18922. doi: 10.1038/s41598-024-69568-0.
7
Hearing Aid Delay Effects on Neural Phase Locking.
Ear Hear. 2024;45(1):142-150. doi: 10.1097/AUD.0000000000001408. Epub 2023 Jul 12.
8
Are musical activities associated with enhanced speech perception in noise in adults? A systematic review and meta-analysis.
Curr Res Neurobiol. 2023 Mar 24;4:100083. doi: 10.1016/j.crneur.2023.100083. eCollection 2023.
9
Decoding of Envelope vs. Fundamental Frequency During Complex Auditory Stream Segregation.
Neurobiol Lang (Camb). 2020 Jul 1;1(3):268-287. doi: 10.1162/nol_a_00013. eCollection 2020.
10
Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study.
J Clin Med. 2023 Jan 23;12(3):897. doi: 10.3390/jcm12030897.

本文引用的文献

1
How Many Subjects Does It Take To Do A Regression Analysis.
Multivariate Behav Res. 1991 Jul 1;26(3):499-510. doi: 10.1207/s15327906mbr2603_7.
2
The Potential Role of the cABR in Assessment and Management of Hearing Impairment.
Int J Otolaryngol. 2013;2013:604729. doi: 10.1155/2013/604729. Epub 2013 Jan 30.
3
Aging affects neural precision of speech encoding.
J Neurosci. 2012 Oct 10;32(41):14156-64. doi: 10.1523/JNEUROSCI.2176-12.2012.
4
Musical experience offsets age-related delays in neural timing.
Neurobiol Aging. 2012 Jul;33(7):1483.e1-4. doi: 10.1016/j.neurobiolaging.2011.12.015. Epub 2012 Jan 9.
5
Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children.
Hear Res. 2012 Feb;284(1-2):52-8. doi: 10.1016/j.heares.2011.12.005. Epub 2011 Dec 16.
6
Sex differences in auditory subcortical function.
Clin Neurophysiol. 2012 Mar;123(3):590-7. doi: 10.1016/j.clinph.2011.07.037. Epub 2011 Sep 8.
7
Training to improve hearing speech in noise: biological mechanisms.
Cereb Cortex. 2012 May;22(5):1180-90. doi: 10.1093/cercor/bhr196. Epub 2011 Jul 28.
8
Everyday hearing functioning in unilateral versus bilateral hearing aid users.
Am J Otolaryngol. 2012 Mar-Apr;33(2):205-11. doi: 10.1016/j.amjoto.2011.06.001. Epub 2011 Jul 26.
9
Methods to eliminate stimulus transduction artifact from insert earphones during electroencephalography.
Ear Hear. 2012 Jan-Feb;33(1):144-50. doi: 10.1097/AUD.0b013e3182280353.
10
A neural basis of speech-in-noise perception in older adults.
Ear Hear. 2011 Nov-Dec;32(6):750-7. doi: 10.1097/AUD.0b013e31822229d3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验