Suppr超能文献

能够支持人类巨细胞病毒潜伏和激活并产生感染性后代的髓系祖细胞系。

A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny.

机构信息

Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

J Virol. 2012 Sep;86(18):9854-65. doi: 10.1128/JVI.01278-12. Epub 2012 Jul 3.

Abstract

Human cytomegalovirus (HCMV) is a herpesvirus that establishes a lifelong, latent infection within a host. At times when the immune system is compromised, the virus undergoes a lytic reactivation producing infectious progeny. The identification and understanding of the biological mechanisms underlying HCMV latency and reactivation are not completely defined. To this end, we have developed a tractable in vitro model system to investigate these phases of viral infection using a clonal population of myeloid progenitor cells (Kasumi-3 cells). Infection of these cells results in maintenance of the viral genome with restricted viral RNA expression that is reversed with the addition of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, also known as PMA). Additionally, a latent viral transcript (LUNA) is expressed at times where viral lytic transcription is suppressed. Infected Kasumi-3 cells initiate production of infectious virus following TPA treatment, which requires cell-to-cell contact for efficient transfer of virus to other cell types. Importantly, lytically infected fibroblast, endothelial, or epithelial cells can transfer virus to Kasumi-3 cells, which fail to initiate lytic replication until stimulated with TPA. Finally, inflammatory cytokines, in addition to the pharmacological agent TPA, are sufficient for transcription of immediate-early (IE) genes following latent infection. Taken together, our findings argue that the Kasumi-3 cell line is a tractable in vitro model system with which to study HCMV latency and reactivation.

摘要

人类巨细胞病毒(HCMV)是一种疱疹病毒,在宿主中建立终身潜伏感染。当免疫系统受损时,病毒会发生裂解再激活,产生感染性后代。HCMV 潜伏和再激活的生物学机制的识别和理解尚未完全定义。为此,我们开发了一种可行的体外模型系统,使用髓样祖细胞(Kasumi-3 细胞)的克隆群体来研究病毒感染的这些阶段。这些细胞的感染导致病毒基因组的维持,病毒 RNA 表达受到限制,加入佛波酯 12-O-十四烷酰佛波醇-13-乙酸酯(TPA,也称为 PMA)后可逆转。此外,在病毒裂解转录受到抑制时,表达潜伏病毒转录本(LUNA)。受感染的 Kasumi-3 细胞在 TPA 处理后开始产生感染性病毒,这需要细胞间接触才能有效地将病毒转移到其他细胞类型。重要的是,裂解感染的成纤维细胞、内皮细胞或上皮细胞可以将病毒转移到 Kasumi-3 细胞,而这些细胞在受到 TPA 刺激之前不会启动裂解复制。最后,除了药理学试剂 TPA 外,炎症细胞因子也足以在潜伏感染后转录即刻早期(IE)基因。总之,我们的研究结果表明,Kasumi-3 细胞系是一种可行的体外模型系统,可用于研究 HCMV 潜伏和再激活。

相似文献

8
Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells.
Blood. 2006 Dec 1;108(12):3691-9. doi: 10.1182/blood-2005-12-026682. Epub 2006 Aug 24.
10
Human cytomegalovirus: Latency and reactivation in the myeloid lineage.
J Clin Virol. 2008 Mar;41(3):180-5. doi: 10.1016/j.jcv.2007.11.014.

引用本文的文献

1
Cytomegalovirus latency-the sum of subtleties.
J Virol. 2025 Aug 19;99(8):e0066425. doi: 10.1128/jvi.00664-25. Epub 2025 Jul 30.
2
N6-methyladenosine modification of HCMV IE1 transcript promotes the repressive state of viral genome to achieve latent infection.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2508475122. doi: 10.1073/pnas.2508475122. Epub 2025 Jun 10.
4
Protein-S-nitrosylation of human cytomegalovirus pp65 reduces its ability to undermine cGAS.
J Virol. 2025 May 20;99(5):e0048125. doi: 10.1128/jvi.00481-25. Epub 2025 Apr 17.
5
Inhibition of MAPK signaling suppresses cytomegalovirus reactivation in CD34 Kasumi-3 cells.
bioRxiv. 2025 Feb 13:2025.02.13.638080. doi: 10.1101/2025.02.13.638080.
6
B cell receptor dependent enhancement of dengue virus infection.
PLoS Pathog. 2024 Oct 31;20(10):e1012683. doi: 10.1371/journal.ppat.1012683. eCollection 2024 Oct.
7
The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2408078121. doi: 10.1073/pnas.2408078121. Epub 2024 Sep 18.
8
Repurposing an endogenous degradation domain for antibody-mediated disposal of cell-surface proteins.
EMBO Rep. 2024 Mar;25(3):951-970. doi: 10.1038/s44319-024-00063-3. Epub 2024 Jan 29.
9
Molecular characterization of human cytomegalovirus infection with single-cell transcriptomics.
Nat Microbiol. 2023 Mar;8(3):455-468. doi: 10.1038/s41564-023-01325-x. Epub 2023 Feb 2.
10
Functional and molecular dissection of HCMV long non-coding RNAs.
Sci Rep. 2022 Nov 11;12(1):19303. doi: 10.1038/s41598-022-23317-3.

本文引用的文献

1
Human cytomegalovirus latency-associated protein LUNA is expressed during HCMV infections in vivo.
Arch Virol. 2011 Oct;156(10):1847-51. doi: 10.1007/s00705-011-1027-7. Epub 2011 May 29.
2
The role of cell types in cytomegalovirus infection in vivo.
Eur J Cell Biol. 2012 Jan;91(1):70-7. doi: 10.1016/j.ejcb.2011.02.002. Epub 2011 Apr 13.
4
Experimental human cytomegalovirus latency in CD14+ monocytes.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20039-44. doi: 10.1073/pnas.1014509107. Epub 2010 Nov 1.
5
Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle.
PLoS Pathog. 2010 Sep 9;6(9):e1001096. doi: 10.1371/journal.ppat.1001096.
6
Alteration of lipid metabolism in cells infected with human cytomegalovirus.
Virology. 2010 Aug 15;404(1):71-7. doi: 10.1016/j.virol.2010.04.026.
10
ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays.
J Immunol Methods. 2009 Aug 15;347(1-2):70-8. doi: 10.1016/j.jim.2009.06.008. Epub 2009 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验