State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
PLoS Genet. 2012 Jun;8(6):e1002788. doi: 10.1371/journal.pgen.1002788. Epub 2012 Jun 28.
The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.
蝙蝠和齿鲸的回声定位能力是趋同进化的一个显著案例。以前的遗传研究记录了 Prestin 和 KCNQ4 核苷酸序列的平行进化,这两个基因都与耳蜗信号放大过程中的电压运动有关。回声定位涉及复杂的机制。最重要的因素包括耳蜗放大、神经传递和信号重新编码。在此,我们筛选了三个在听觉系统中发挥不同作用的基因。钙黏蛋白 23(Cdh23)及其配体原钙黏蛋白 15(Pcdh15)对于感觉毛的捆绑运动是必不可少的。耳钙蛋白(Otof)对听觉内毛细胞的神经信号传递有反应。在回声定位的三组动物(两个蝙蝠组和海豚)中,所有三个基因都存在平行进化的信号。在 Rhinolophoidea 和海豚的 Cdh23 以及 Yangochiroptera 的 Pcdh15 中也存在显著的正选择信号。此外,成年回声定位蝙蝠的听觉皮层中 Otof 的表达水平高于其胚胎和非回声定位蝙蝠。Cdh23 和 Pcdh15 分别编码尖端连接的上下部分,这两个基因在回声定位器中都显示出趋同进化和正选择的信号,这表明它们可能共同进化以优化耳蜗放大。Otof 的趋同进化和表达模式表明神经和大脑在回声定位中的潜在作用。我们对基因序列和基因表达分析的综合研究表明,正选择、平行进化,以及可能的共同进化和基因表达,影响了在听觉中发挥不同作用的多个听力基因,包括耳蜗放大过程中的电压和束状运动、神经传递和大脑功能。