Suppr超能文献

理解众包搜索群体:社会网络视角。

Understanding crowd-powered search groups: a social network perspective.

机构信息

The State Key Laboratory of Management and Control for Complex Systems, Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS One. 2012;7(6):e39749. doi: 10.1371/journal.pone.0039749. Epub 2012 Jun 27.

Abstract

BACKGROUND

Crowd-powered search is a new form of search and problem solving scheme that involves collaboration among a potentially large number of voluntary Web users. Human flesh search (HFS), a particular form of crowd-powered search originated in China, has seen tremendous growth since its inception in 2001. HFS presents a valuable test-bed for scientists to validate existing and new theories in social computing, sociology, behavioral sciences, and so forth.

METHODOLOGY

In this research, we construct an aggregated HFS group, consisting of the participants and their relationships in a comprehensive set of identified HFS episodes. We study the topological properties and the evolution of the aggregated network and different sub-groups in the network. We also identify the key HFS participants according to a variety of measures.

CONCLUSIONS

We found that, as compared with other online social networks, HFS participant network shares the power-law degree distribution and small-world property, but with a looser and more distributed organizational structure, leading to the diversity, decentralization, and independence of HFS participants. In addition, the HFS group has been becoming increasingly decentralized. The comparisons of different HFS sub-groups reveal that HFS participants collaborated more often when they conducted the searches in local platforms or the searches requiring a certain level of professional knowledge background. On the contrary, HFS participants did not collaborate much when they performed the search task in national platforms or the searches with general topics that did not require specific information and learning. We also observed that the key HFS information contributors, carriers, and transmitters came from different groups of HFS participants.

摘要

背景

众包搜索是一种新的搜索和解决问题的方案,涉及到大量的志愿网络用户之间的协作。人肉搜索(HFS)是一种源自中国的特殊众包搜索形式,自 2001 年成立以来已经有了巨大的发展。HFS 为科学家提供了一个宝贵的测试平台,用于验证社会计算、社会学、行为科学等领域的现有和新理论。

方法

在这项研究中,我们构建了一个聚合的 HFS 群体,由一系列已识别的 HFS 事件中的参与者及其关系组成。我们研究了聚合网络和网络中的不同子群体的拓扑性质和演化。我们还根据各种度量标准确定了关键的 HFS 参与者。

结论

与其他在线社交网络相比,我们发现 HFS 参与者网络具有幂律度分布和小世界特性,但组织结构更为松散和分散,导致 HFS 参与者的多样性、分散性和独立性。此外,HFS 群体的分散程度越来越高。对不同 HFS 子群体的比较表明,当在本地平台或需要一定专业知识背景的搜索中进行搜索时,HFS 参与者之间的协作更为频繁。相反,当在全国性平台或不需要特定信息和学习的一般性主题的搜索中进行搜索时,HFS 参与者之间的协作就不那么频繁了。我们还观察到,关键的 HFS 信息贡献者、载体和传播者来自 HFS 参与者的不同群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f198/3384627/213b82a583e2/pone.0039749.g001.jpg

相似文献

1
Understanding crowd-powered search groups: a social network perspective.
PLoS One. 2012;7(6):e39749. doi: 10.1371/journal.pone.0039749. Epub 2012 Jun 27.
2
Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives.
J Med Internet Res. 2016 Mar 10;18(3):e63. doi: 10.2196/jmir.5042.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Human flesh search: a supplemental review.
Cyberpsychol Behav Soc Netw. 2012 Jul;15(7):350-6. doi: 10.1089/cyber.2011.0481.
5
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
6
Taking Justice Into Their Own Hands: Predictors of Netilantism Among Cyber Citizens in Hong Kong.
Front Psychol. 2020 Oct 2;11:556903. doi: 10.3389/fpsyg.2020.556903. eCollection 2020.
7
8
The world of e-patients: A content analysis of online social networks focusing on diseases.
Telemed J E Health. 2010 Dec;16(10):1060-6. doi: 10.1089/tmj.2010.0085. Epub 2010 Nov 11.
10
A prospective examination of online social network dynamics and smoking cessation.
PLoS One. 2017 Aug 23;12(8):e0183655. doi: 10.1371/journal.pone.0183655. eCollection 2017.

引用本文的文献

2
Artificial intelligence in cancer target identification and drug discovery.
Signal Transduct Target Ther. 2022 May 10;7(1):156. doi: 10.1038/s41392-022-00994-0.
3
Information Diffusion on Social Media During Natural Disasters.
IEEE Trans Comput Soc Syst. 2018 Jan 11;5(1):265-276. doi: 10.1109/TCSS.2017.2786545. eCollection 2018 Mar.
4
Network-based prediction and knowledge mining of disease genes.
BMC Med Genomics. 2015;8 Suppl 2(Suppl 2):S9. doi: 10.1186/1755-8794-8-S2-S9. Epub 2015 May 29.
5
Exploratory search on Twitter utilizing user feedback and multi-perspective microblog analysis.
PLoS One. 2013 Nov 12;8(11):e78857. doi: 10.1371/journal.pone.0078857. eCollection 2013.

本文引用的文献

1
Collective emotions online and their influence on community life.
PLoS One. 2011;6(7):e22207. doi: 10.1371/journal.pone.0022207. Epub 2011 Jul 27.
2
How Correlated Are Network Centrality Measures?
Connect (Tor). 2008 Jan 1;28(1):16-26.
3
Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026123. doi: 10.1103/PhysRevE.80.026123. Epub 2009 Aug 24.
4
The impact of boundary spanning scholarly publications and patents.
PLoS One. 2009 Aug 18;4(8):e6547. doi: 10.1371/journal.pone.0006547.
5
Wikipedias: collaborative web-based encyclopedias as complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016115. doi: 10.1103/PhysRevE.74.016115. Epub 2006 Jul 24.
6
Network clustering coefficient without degree-correlation biases.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057101. doi: 10.1103/PhysRevE.71.057101. Epub 2005 May 13.
7
Mixing patterns in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026126. doi: 10.1103/PhysRevE.67.026126. Epub 2003 Feb 27.
8
Hierarchical organization in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112. doi: 10.1103/PhysRevE.67.026112. Epub 2003 Feb 14.
9
Betweenness centrality correlation in social networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):017101. doi: 10.1103/PhysRevE.67.017101. Epub 2003 Jan 13.
10
Assortative mixing in networks.
Phys Rev Lett. 2002 Nov 11;89(20):208701. doi: 10.1103/PhysRevLett.89.208701. Epub 2002 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验